

www.createconsultingengineers.co.uk

EAST WISBECH BROAD CONCEPT PLAN Surface Water Drainage Options Report

EAST WISBECH BROAD CONCEPT PLAN Surface Water Drainage Options Report

Client:	Fenland District Council		
Engineer:	Create Consulting Engineers Limited 15 Princes Street Norwich Norfolk NR3 1AF		
	Tel: Email: Web:	01603 877 010 <u>enquiries@createconsultingengineers.co.uk</u> <u>www.createconsultingengineers.co.uk</u>	
Report By:	Tracey Fra	am, BSc (Hons)	
Reviewed By:	Graham Sinclair, BSc (Hons), MSc, DIC, MCIWEM		
Approved By:	Barrie Anderson, BEng (Hons)		
Reference:	TF/CC/P17-1309/01		
Date:	Novembe	r 2017	

EAST WISBECH BROAD CONCEPT PLAN Surface Water Drainage Options Report

CONTENTS

- 1.0 Introduction
- 2.0 Sources of Information
- 3.0 Site Setting
- 4.0 SUDS options
- 5.0 Conclusions and Recommendations
- 6.0 References

FIGURES

- 1.1 Site Location
- 1.2 Existing Site Layout
- 3.1 2.0 m Resolution LiDAR Topography
- 3.2 IDB and Riparian Watercourses
- 3.3 Spot Heights within IDB Watercourses
- 3.4 Environment Agency Flood Map
- 3.5 Environment Agency Surface Water Flood Map
- 4.1 Attenuation Basin Drainage Areas

APPENDICES

- A. Anglian Water Asset Plans
- B. Greenfield Runoff Calculations
- C. Micro Drainage Calculations
- D. IDB Correspondence

PLANS

1309/02/001A Indicative Attenuation Basin Positions and Sizes

REGISTRATION OF AMENDMENTS

Revision and Date	Amendment Details	Revision Prepared By	Revision Approved By

1.0 INTRODUCTION

Brief

1.1 Create Consulting Engineers Ltd was instructed by Fenland District Council to undertake a Surface Water Drainage Options Report to inform an overarching Broad Concept Plan (BCP) for the development of land to the east of Wisbech. This parcel of land has been allocated, within the Fenland District Council (FDC) local plan (2014) and Kings Lynn and West Norfolk Borough Council (KLWNBC) Core Strategy (2011) and Site Allocations & Development Management Policies Plan (2016) as a sustainable urban extension area, envisaged to accommodate development in the order of 1450 residential properties.

Project Context

- **1.2** The Site comprises approximately 73.0 hectares of arable farmland and orchards interspersed with established woodlands and informal open space.
- 1.3 The administrative boundary between FDC and KLWNBC runs through the Site as shown on the existing site location plan (Figure 1.1), included at the rear of this report. The existing site layout is shown on Figure 1.2, also included at the rear of this report.
- 1.4 It is understood that the area of the Site governed by FDC has the capacity to accommodate 900 residential units and the area governed by KLWNBC has capacity for 550 units.

Planning Policy Context

1.5 An assessment of surface water and drainage is required as part of the BCP in order to consider how surface water flows, both within the Site and to surrounding areas, will be managed following development, whilst taking climate change into account.

National Planning Policy Guidance

1.6 The Planning Practice Guidance requires that sustainable drainage systems should be considered as part of the development and included where practicable, in line with the DEFRA Technical Standards¹.

District Council Planning Policy

1.7 The Fenland Local Plan (2014), Kings Lynn and West Norfolk Core Strategy (2011) and Kings Lynn and West Norfolk Site Allocations Development Management Policies Plan (2016)

¹ Technical Standards Accessed Online (November 2017)

 $[\]label{eq:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/415773/sustainable-drainage-technical-standards.pdf$

provide guidance on development in the area. The relevant policies identified in these documents are listed below:

Fenland Local Plan:

• Policy LP14 (Part B) Flood Risk and Drainage

Kings Lynn and West Norfolk Core Strategy:

Policy CS08 Sustainable Development: Flood Risk and Climate Change

Kings Lynn and West Norfolk Site Allocations Development Management Policies Plan:

- Policy F3.1 Wisbech Fringe Land East of Wisbech (West of Burretgate Road)
- Policy DM21 Sites in Areas of Flood Risk
- 1.8 The Level 1 Strategic Flood Risk Assessment (SFRA) for Fenland District Council Area (Scott Wilson, 2011), the adopted Cambridgeshire Flood and Water SPD (Cambridgeshire County Council, 2016) and the Kings Lynn and West Norfolk Strategic Flood Risk Assessment (SFRA) (Faber Maunsell, 2008) provide further detail on the flood risks for the local area and include guidance for developers and applicants on managing flood risk and sustainable drainage around new developments.
- 1.9 More detailed information from both SFRA's is provided throughout this report. It should be noted that the Kings Lynn and West Norfolk Strategic Flood Risk Assessment (SFRA) is currently being reviewed and a new Level 1 SFRA will be published in January 2018.

Climate Change

- 1.10 Climate change has important implications for the assessment and management of flood risk. The NPPF requires that climate change is considered when making an assessment of flood risk posed to future development.
- 1.11 Climate change has the potential to affect all identified sources of flooding at the Site. The likely impacts of climate change include increased severity of rainfall events as well as wetter winters, leading to higher groundwater levels and increased frequency and severity of surface water flooding.
- 1.12 The influence of climate change on rainfall intensity has been taken into account by this report as an inclusion of 40% has been made for climate change for all rainfall events up to and including the 1 in 100 year event in accordance with NPPF requirements, and 'Flood Risk Assessments: Climate Change Allowances'².

² Environment Agency (2016) Flood Risk Assessments: Climate Change Allowances.

Objectives

- 1.13 The following specific objectives were set by Create Consulting Engineers Ltd after a review of the available data:
 - To appraise the baseline hydrological conditions on and around the development area;
 - To review the various SUDS options and comment on their suitability for the proposed development; and,
 - To provide a suggested approach for surface water drainage and SUDS for the proposed development.

Constraints and Limitations

- 1.14 The copyright of this report is vested in Create Consulting Engineers Ltd and the Client, Fenland District Council. The Client, or their appointed representatives, may copy the report for purposes in connection with the development described herein. It shall not be copied by any other party or used for any other purposes without the written consent of Create Consulting Engineers Ltd or the Client.
- 1.15 Create Consulting Engineers Ltd accept no responsibility whatsoever to other parties to whom this report, or any part thereof, is made known. Any such other parties rely upon the report at their own risk.
- 1.16 This report addresses the extent of the development area only, which is shown by the Site boundary, as indicated on Figure 1.1.
- 1.17 The conclusions resulting from this study are not necessarily indicative of future conditions or operating practices at or adjacent to the Site.
- 1.18 Create Consulting Engineers Ltd has endeavoured to assess all information provided to them during this appraisal. The report summarises information from a number of external sources and cannot offer any guarantees or warranties for the completeness or accuracy or information relied upon. Information from third parties has not been verified by Create Consulting Engineers Ltd unless otherwise stated in this report.

2.0 SOURCES OF INFORMATION

2.1 The information contained in this report is based on a review of existing information and consultation with interested parties.

Records Review

2.2 Key reports and websites reviewed as part of this study are listed in Table 2.1 below.

Document/Website	Publisher	Date
Fluvial/Tidal Flood Maps - <u>https://flood-map-for-</u>	GOV.UK	Accessed
planning.service.gov.uk/		November
		2017
Groundwater Mapping – environment-agency.gov.uk	Environment Agency	Accessed
	(EA)	November
		2017
Surface Water and Reservoir Flood Mapping – <u>flood-</u>	GOV.UK	Accessed
warning-information.service.gov.uk		November
		2017
BGS GeoIndex – Geology and borehole records -	British Geological	Accessed
www.bgs.ac.uk/geoindex	Survey	November
		2017
Fenland District Council District Strategic Flood Risk	Scott Wilson	2010
Assessment -		
http://www.fenland.gov.uk/CHttpHandler.ashx?id=3772&p=0		
Kings Lynn and West Norfolk Strategic Flood Risk	Faber Maunsell	2008
Assessment		
Kings Lynn and West Norfolk Strategic Flood Risk	Bullen	2005
Assessment		
Wisbech Strategic Flood Risk Assessment Level 2 -	WSP	2012
http://www.fenland.gov.uk/article/3588/Wisbech-Strategic-		
Flood-Risk-Assessment-2		
Anglian Water Clean and Waste Water Asset Plans	Anglian Water	June 2017
(Appendix A)		
Open source Lidar Data	Data.gov.uk	November
		2017
Internal Drainage Board controlled watercourses map	Kings Lynn Internal	September
	Drainage Board	2017

Table 2.1: Key Information Sources

Site Walkover

2.3 A site walkover was undertaken by Create Consulting Engineers Ltd on 7th July 2017. A visual examination of the Site from perimeter roads and public rights of way, as well as an assessment of its hydrology and surrounding area was carried out.

Consultation

2.4 The agencies and individuals consulted as part of this exercise and/or had their records reviewed as part of this FRA are listed in Table 2.2.

Consultee	Form of Consultation	Topics Discussed and Actions Agreed
Anglian Water	Request for asset	Asset plans were received on 6 th July 2017 and are
Developer	plans via online	included in Appendix A. These are summarised in full in
Services.	portal on 6 th July	Chapter 3.
	2017	
Kings Lynn	Request for	The response received on 11 th July 2017 (included in
Internal	information on 7 th	Appendix D) and provided the following:
Drainage	July 2017 and	
Board	subsequent	• Map of IDB controlled drains within the Site; and,
	correspondence in	Associated levels of drains.
	July 2017	

Table 2.2: List of Parties consulted as part of this Assessment

3.0 SITE SETTING

Site Location

3.1 The Site lies on the east side of Wisbech, approximately 1.3 km from Wisbech Town Centre, at Ordnance Survey grid reference 547753E, 309484N.

Description of Site and Surroundings

- 3.2 The Site comprises undeveloped farmland, consisting predominantly of arable fields and orchards with several agricultural drains bisecting it in various orientations.
- 3.3 The Site is bounded to the north and west by residential estates. To the south and east by Burrettgate Road, followed by a mix of continuing orchard and arable fields, farmyards and light industrial units. Bordering the Site to the south east corner is Meadowgate Academy.
- 3.4 The Site is relatively flat when considering its size, with ground levels ranging from 2.0 to 3.0 mAOD, falling generally from west to east across the site. Full level information is included on Figure 3.1 at the rear of this report.

Hydrological Setting

Surface Watercourses

- 3.5 There are a series of agricultural drains located on the Site that generally drain the land in an easterly direction towards Burrettgate Lane and the A47. These drains are a mix of Ordinary Watercourses and IDB controlled watercourses, which form three separate drainage systems within the Site, as shown on Figure 3.2. Spot heights for which are included within Figure 3.3 at the rear of this report.
- 3.6 Baxter Dyke drains the northern portion of the Site including Chapnall Field. This is an IDB controlled drain (DRN145P1131) which continues beyond the Site boundary to the northeast. Water draining to this system flows through a series of IDB controlled drains before joining Smiths Lode Drain (DRN145P0102) approximately 5.0 km east of the Site. Smiths Lode Drain continues to the northeast, becoming Black Ditch Level Drain (DRN145P0401) and Goodley Islington School Drain (DRN145P0104), before meeting Islington Pumping Station (PMP145P001) approximately 10.0 km northeast of the Site. This station has a total of five pumps, giving a total pumped capacity of 12.0 m³/s and a maximum lift of 4.65 m (3 diesel pumps at 2.8 m³/s and two electric at 1.8 m³/s capacity). The pumping station then outflows via a short length of dyke to The River Great Ouse.
- 3.7 The southern section of the Site drains via two separate systems which parallel each other, flowing laterally west to east across the Site.

- 3.8 Green Lane Drain is an IDB controlled watercourse (DRN145P1126) which receives a number of Ordinary watercourses draining the area of the Site south of Sandy Lane, including Hall Field. This drain continues beyond the Site boundary to the east, connecting with College Drain (DRN145P1101) approximately 1.3 km east of the Site. College Drain continues to the east before joining with Smeeth Lode Drain (DRN145P0102) and turning to the north, approximately 3.4 km from the Site boundary.
- 3.9 College Drain also forms the southern boundary of the Site, receiving drainage from the area immediately south of the Site up to Green Lane Drain, including land behind Meadowgate Academy. This is also an IDB controlled drain (DRN145P1101) which receives Ordinary watercourses from within the Site before flowing east from the Site boundary, following the course outlined above.
- 3.10 Both College Drain and Green Lane Drain eventually reach Islington Pumping Station before discharging in to The River Great Ouse.
- 3.11 The River Great Ouse flows approximately 12.0 km to the east of the Site. This watercourse is also classified as a Main River and flows in a northerly direction before outflowing in to The Wash approximately 18.0 km north of the Site.
- 3.12 The River Nene runs through Wisbech approximately 1.5 km west of the Site. This watercourse is classified as a Main River by the Environment Agency (EA) and flows in a northerly direction through the centre of Wisbech before discharging into The Wash approximately 17.0 km north of the Site.

Estuaries and Coastal Watercourses

3.13 The River Nene and River Great Ouse in the vicinity of the Site are tidally influenced. The adjacent IDB drains are not directly influenced by tidal events due to the fact they have a pumped outfall. However it is understood downstream tidal events can impact the pumping regime and therefore levels within these IDB drains.

Ground Conditions

- 3.14 BGS mapping for the Site shows the bedrock geology is comprised of the Ampthill Clay Formation (mudstone) and superficial deposits of Tidal Flat Deposits (clay and silt).
- 3.15 A borehole investigation, comprising a series of three boreholes, approximately 350.0 m from the western boundary of the Site (TF40NE16) confirms the presence of layers of silty fine sands at depths up to 15.0 meters below ground level (mbgl).

3.16 A further two boreholes located on Lynn Road approximately 650 m northwest of the Site also show silty sands with increasing clay content being described as firm clayey sandy silt (TF41SE33) and firm brown fine sandy very silty clay (TF41SE32).

<u>Groundwater</u>

- 3.17 Water was found standing at a depth of 1.7 mbgl in Borehole TF40NE16 and at 1.8 mbgl in boreholes TF41SE33 and TF41SE32.
- 3.18 According to the 1:625,000 scale BGS Hydrogeology map of the UK the Site does not overlie any aquifers. Both the bedrock and superficial deposits are classified as unproductive.
- 3.19 According to the EA website, the Site does not lie within any Groundwater Source Protection Zones.

Artificial Waterbodies

- 3.20 There is a small network of three ponds located approximately 100 m to the south east of the Site. There is potential for the Site to hold an existing hydrological link to these ponds via a common watercourse ditch leading south from the south eastern corner of the site, further site investigation will be needed to ascertain the drainage linkages in this area as part of any future drainage design.
- 3.21 Lemons Pond (WCS145P1101-01 and 02) and Mid Farrow Pond (WCS145P0124-01 and 02) Water Control Structures are located approximately 1.0 km and 2.8 km east of the Site respectively. These are manmade or altered water bodies which provide a measure of off line attenuation controlled by the IDB. These structures may be connected to IDB drain DRN145P1101 College Drain which carries surface water flows from the Site.
- 3.22 A small number of ponds are also noted leading off Green Lane and Biggs Lane approximately 400 m and 1.4 km east of the Site respectively.
- 3.23 No other significant artificial water bodies are noted in close proximity the Site.

Public Sewers and Water Supply Mains

- 3.24 Anglian Water asset plans are included in Appendix A. These show no public foul sewers crossing the Site.
- 3.25 A surface water sewer enters the Site from the northern boundary, running past Three Trees and back garden boundaries of dwellings along Fundrey Road. This sewer is one of a number of surface water drains which outfall into the Site from the surrounding residential areas to the north and west. A full list of outfalls can be found below including the diameter of the aforementioned outfall, which is the only asset to enter the Site boundary itself.

- Flowing to Baxters Dyke:
 - Three Trees, 225mm pipe passing Manhole 8151; and,
 - Between numbers 125 and 133 Stow Road, 675mm pipe meeting 375mm pipe at Manhole 5653.
- Flowing to Green Lane Drain:
 - Between numbers 23 and 42 Orchard Drive, 150mm pipe passing manhole 4252;
 - Stow Gardens, 225mm pipe passing Manhole 3152; and,
 - Junction of Quaker Lane and Penrose Gardens, 600mm pipe passing Manhole 2952.
- Potentially flowing to College Drain
 - Between 42 Meadowgate Lane and 33 Mansell Road, 375mm pipe meeting 300mm pipe passing Manhole 2851; and,
 - Behind 29 Queen Elizabeth Drive and 63 Falklands Avenue, 675mm pipe passing Manhole 2654.
- 3.26 The foul sewers that serve both the residential development immediately north and west of the Site (100, 150, 175 and 225mm in diameter) generally follow the road corridors and surface water sewers. There is also a small branch along part of Burrettgate Road to the north east corner of the Site.
- 3.27 The foul sewers generally follow road layouts along the western Site boundary flowing from both the north and south, towards the middle of the Site boundary, before striking west to pumping station WISMSP, positioned at the junction between Orchard Drive and Money Bank.

<u>Site Drainage</u>

- 3.28 There are no known private foul water assets located within the Site boundary.
- 3.29 Surface water flows are assumed to infiltrate and run off overland and flow into the various drains across the Site during extreme rainfall events. Rates of infiltration are likely to be low due to the impermeable, silty nature of the underlying geology as well as the shallow groundwater.
- 3.30 Calculations included in Appendix B estimate the current Greenfield runoff rates from the Site as shown in Table 3.1.

Rainfall Event	Greenfield runoff rate whole Site
Q 1 year	82.53 l/s
Q 30 year	230.11 l/s
Q 100 year	345.65 l/s

Table 3.1: Greenfield Runoff Rates from the Site for Various Rainfall Events.

Flood Zones, Flood Levels & Defence Protection

- 3.31 According to the EA flood maps (Appendix A) the Site is located predominantly within Flood Zone 1, as shown in Figure 3.4. This risk zone is assessed by the Environment Agency as having a 1 in 1000 or less (<0.1%) probability of flooding from rivers or the sea in any one year.
- 3.32 Part of the eastern side of the Site however, surrounding the junction between Sandy Lane and Burrettgate Road, is shown as being within Flood Zone 3. NPPF Technical Guidance states that land within Flood Zone 3 is assessed as having a 1 in 100 (1%) or greater annual probability of river flooding or 1 in 200 (0.5 %) or greater annual probability of flooding from the sea.
- 3.33 According to available EA mapping and The River Nene Catchment Flood Management Plan (2008) there are flood defences associated with the River Nene located approximately 1.5 km west of the Site. These flood defences include a combination of brick clad concrete and steel floodwalls, flood banks and manually operated flood gates, designed to provide protection up to the 1 in 200 year (0.5%) Annual Exceedance Potential (AEP).
- 3.34 According to available EA mapping, The Great Ouse Tidal River Strategy (2009) and the Draft Great Ouse Catchment Flood Management Plan (2010) there are flood defences associated with the river Great Ouse, approximately 12.0 km east of the Site boundary. These flood defences include raised earth embankments, designed to accommodate the tidal nature of the river, providing protection up to and exceeding the 1 in 500 year event.
- 3.35 The Site is not shown to lie within a floodplain, as the presence of defences confines flood flows to the river channels of The Nene and Great Ouse (Wisbech Level 2 SFRA, 2012). Flood maps provided by the EA show areas benefiting from flood defences partially covering the Site, surrounding the junction between Sandy Lane and Burrettgate Road, and extensively over surrounding land to the north and east.
- 3.36 The Wisbech Level 2 SFRA (2012) report and modelling provides details of the likely effects of the River Nene breaching or overtopping during a flood event and shows that areas to the centre of the site may potentially be affected by flooding to depths of between 0 and 0.25m. This however is considered a residual risk, which is unlikely to significantly affect the site when considering the wider context.

3.37 The Site is therefore considered to be at predominantly low risk of fluvial and tidal flooding. It is envisioned that the small areas of flood risk shown to be in Flood Zone 2 and 3 in the eastern part of the site will be accommodated within the final layout of the Site and managed as part of the Site's drainage and risk management strategy. This would accord with these areas being in the lowest part of the site, which will naturally accommodate gravitational flows.

Flood Mapping – Non Fluvial/Tidal Sources of Flooding

- 3.38 The EA website confirms that the Site is not located in an area that 'might be flooded if a reservoir were to fail'.
- 3.39 The EA Surface Water Flood Maps (Figure 3.5) suggest that the majority of the Site is at a 'very low' risk of surface water flooding. This risk category is associated with a probability of flooding from extreme rainfall of less than 1 in 1000 (0.1 %).
- 3.40 There are a few small areas of 'low' risk across the Site including a larger area to the south east of the Site. This risk category is associated with a probability of flooding from extreme rainfall of between 1 in 1000 (0.1%) and 1 in 100 (1%). Flood velocities however (outside of the bisecting drains) remain below 0.25m/s with depths beyond the various drains also less than 300 mm.

Flood History

- 3.41 Records from the Fenland District Council Strategic Flood Risk Assessment (2011), the Kings Lynn and West Norfolk Borough Council Strategic Flood Risk Assessment (2005) and the Wisbech Strategic Flood Risk Assessment 2 (2012) show two separate major flooding events in Wisbech in 1978 and 1998. As shown on Figure 9 of Fenland District Council's SFRA the recorded flood extents of both these events are confined to the north west of the town and did not reach the Site.
- 3.42 Local news reports and archive photos also show Wisbech to have been affected by the tidal surge flooding of 1953. The news articles however concentrate on the centre of Wisbech with no information relating to flood extents available over the site area.

4.0 SUDS OPTIONS

Proposed Scheme

4.1 Proposals for the scheme involve the development of the Site to provide a sustainable urban extension of Wisbech. This is to include approximately 1,450 new dwellings, new primary school and local centre, along with all associated access, infrastructure, public open space, landscaping and parking areas.

Appraisal of SUDS Options and Proposed Surface Water Drainage Strategy

4.2 A summary of the potential SUDS options and their associated suitability for use on the Site is included in Table 4.1.

SUDS Option	Suitability	Comments		
Rainwater	\checkmark	Rainwater harvesting systems are considered acceptable		
Harvesting		in principle and would work well for individual dwellings		
		depending on cost implications. A system similar to that		
		provided by Rain Activ would be applicable on the		
		dwelling level basis to act as a means of source control.		
Green Roofs /	\checkmark	These would provide an additional level of surface water		
Brown Roofs /		interception, attenuation in the initial stages of		
Blue Roofs		precipitation. Their use would again be dependent on		
		considerations of cost as well as structural design of		
		dwellings.		
Infiltration	*	Based on our understanding of the ground conditions		
systems		within the Site methods such as conventional soakaways		
including		are not considered suitable due to the potential for		
soakaways and		shallow underlying groundwater. Groundwater		
porous paving		monitoring and subsequent infiltration testing should be		
		carried out during the later stages or design to confirm		
		whether this is the case. There may be limited		
		possibilities for the use of permeable paving dependent		
		upon seasonal high groundwater levels and shallow		
		infiltration potential.		
Porous paving	\checkmark	In areas where infiltration testing, carried out to BRE		
(storage)		Digest 365 standard, has proven to be ineffective, all		
		private drives could be comprised of tanked permeable		
		paving which would provide an additional level of storage		
		and water quality treatment at source.		
Swales	\checkmark	Open conveyance of surface water runoff in swales wi		
		provide both interception and filtration. These features		
		are considered to be acceptable and should be included		
		where practicable and where the adoptable standards of		
		Cambridgeshire & Norfolk County Council Highways		

SUDS Option	Suitability	Comments		
		Department and Anglian Water can be met for these		
		types of features.		
Filter Strips	\checkmark	Another form of open conveyance of surface water runoff		
		this method is considered acceptable for the Site as part		
		of a wider SUDS scheme.		
Filter Drains	✓	These Provide filtration and temporary attenuation in		
		shallow trenches and are useful in hard paved or high use		
		areas. Filter Drains are considered acceptable for the Site		
		as part of a wider SUDS scheme.		
Attenuation	✓	These features are considered to be acceptable and		
Basins (above		should be included where practicable as part of final		
ground storage)		surface water outflow controls. In total 14 attenuation		
		basins are proposed with full details of these features are		
		included in Table 4.2.		
Below ground	Х	Based on our understanding of the ground conditions sub		
storage in		surface attenuation methods are unlikely to be suitable		
cellular systems		for this development, unless appropriate rafting to avoid		
		flotation is used. Also given the attenuation basins will be		
		used this type of system will not be required.		
Flow control	✓	Flow control devices are considered suitable and are		
devices		proposed throughout the scheme to restrict runoff (in		
		association with the aforementioned attenuation basins)		
		to greenfield rates. Further details of these flow controls		
		(14 in total) are included in Table 4.2.		

Table 4.1: SUDS Options

Key:

- ✓ Suitable for use
- * Possibly suitable for use should be considered further as part of the detailed design
- X Unlikely to be suitable for use
- 4.3 On the basis of the above appraisal it is evident that a number of source control and conveyance methods are suitable for use. These source control and conveyance methods should be considered as the proposed site layout develops such that they can be incorporated from an early stage. In terms of final outfall attenuation and restriction to greenfield rates the following provides a summary of the proposed method of management and disposal of surface water runoff:
 - Surface water flows will be attenuated such that flows from the Site are restricted prior to a discharge into the surrounding ditch system;
 - In total 16 surface water outfalls with associated attenuation basins are proposed flowing from the various land parcels (12 in total), delineated by the ditch system intersecting the Site (as detailed by Figure 4.1) and Drawing 1309/02/001A;
 - All flow controls have been restricted to the 1 in 1 year greenfield rate (shown in Table 4.2), equivalent to a 60% impermeability of the developed area of each parcel. These

runoff rates have been developed using the 1.2l/s/ha pro-rata runoff rate for the 1 in 1 year greenfield runoff event (greenfield calculations for each parcel are included in Appendix B).

- The assumption that 60% of the site area will become impermeable is not considered fixed, this will need to be varied as the design of the development progresses to accurately reflect the relevant build density for each parcel.
- As development densities become more fixed at the planning and detailed design stage urban creep should be factored in to the proposals as required, in line with LASSO guidance.
- Greenfield run-off from non-developed areas will need to be factored into calculations to ensure adequate capacity is provided for these flows.
- Micro Drainage calculations (included in Appendix C) have been carried out for each development parcel to estimate the required attenuation. As shown by Table 4.2 this attenuation has then been increased by 50% to allow for bank slopes as well as splitting the basins down into a number of smaller features in some instances. The number of features proposed for each parcel is noted on Table 4.2 and is largely due to the minimal falls across the Site, meaning more than one feature per parcel is required in some instances to avoid basins being overly deep such that gravity connections can be achieved.
- It should be noted however that due to only 2.0 m resolution LiDAR being available for this assessment it has not been possible to accurately position attenuation basins and confirm whether gravity connections can be achieved. As the design of the layout progresses it is recommended that a full topographical survey is carried out such that the attenuation basins can be positioned accurately and the need for any pumped outfalls confirmed.
- Also the detailed positions of the attenuation basins will be further influenced as the design progresses and landscaping and highways constraints are understood in more detail.
- All attenuation basins have been sized on the basis of a design standard of 1 in 100 years plus 40% climate change. These calculations are summarised in more detail in Table 4.2 below and Appendix C.
- Source control water quality treatment measures (as detailed in Table 4.1) should be incorporated into the detailed drainage design for each development parcel where possible.
- The ditch network to which the surface water drainage network is proposed to outfall should be appropriately desilted prior to any connections being made (in liaison with the IDB where required) whilst some localised re-profiling may be required to achieve a connection with pipe cover depths being to adoptable standards. Some land raising may also be required to achieve suitable adoptable cover depths whilst some attenuation basins may have to be further split down across the relevant parcel to reduce pipe lengths.
- A 9.0 m easement is required both side of all IDB controlled drains, and has been included throughout for positioning the attenuation basins.

- Finally it should be noted that as the aforementioned source control measures are included within the scheme the scale of the attenuation basins currently proposed can be reduced as these additional measures will introduce an amount of upstream storage.
- 4.4 For all events beyond the 1 in 100 year plus climate change rainfall event, the situation will be no worse than the existing greenfield scenario, as long as a consideration of exceedance flows is made as part of the detailed drainage design to ensure that any excess surface water runoff would continue to overflow away from the existing and proposed residential properties.
- 4.5 As development parcels are brought forward the accompanying planning applications should include an appropriate flood risk assessment. This should pay specific regard to the risk of flooding posed by surrounding watercourses and the effect this will have on scheme layouts, final housing densities and positioning of attenuation features.
- 4.6 A groundwater quality risk assessment will also be required as part of the detailed design, to ensure that proposals do not detrimentally affect sub-surface water quality.
- 4.7 Each development proposal will be required to consult with Kings Lynn Internal Drainage Board during the design process. Proposals will also be required to gain approval from Kings Lynn Internal Drainage Board for proposed outfalls under Byelaw 3, as the final approving body. This will require outfalls to be restricted to calculated greenfield rates in line with Internal Drainage Board policy whilst runoff volume would also be considered as part of this.

Drainage area (ref to Figure 4.1)	Total Area (ha)	60% Equivalent Impermeable Area (ha) ^{*1}	Restricting Greenfield 1 in 1 Year Flow Rate Based on 1.2 l/s/ha (l/s) ^{*2}	Total Basin Surface Area Including Additional 50% for Bank Slopes and Multiple Basins (m ²)	Basin Depth (m) ^{*3}	Proposed Number of Attenuation Basins
1	5.86	3.52	4.30	4620.00	1.00	1
2	9.24	5.54	6.70	7425.00	1.00	2
3	10.11	6.07	7.30	8100.00	1.00	2
4	2.82	1.69	2.00	2250.00	1.00	1
5	5.56	3.34	4.00	4425.00	1.00	1
6	9.61	5.77	7.00	7620.00	1.00	2
7	3.10	1.86	2.30	2475.00	1.00	1
8	1.25	0.75	1.00	975.00	1.00	1
9	4.02	2.41	2.90	3225.00	1.00	1
10	5.68	3.41	4.10	4650.00	1.00	1
11	2.33	1.40	1.70	1845.00	1.00	1
12	11.50	6.9	8.4	9130.00	1.00	2

Table 4.2: Details of Attenuation Basins

*1The proposed land uses for each parcel have been taken as 100% developable, with an assumed 60% impermeable area. The 60% equivalent impermeable area represents the proposed impermeability of the developed area of each land parcel. Given the lack of a detailed layout such an impermeability factor is commonly used as a conservative estimate. The FSR rainfall estimation method has been used to calculate expected attenuation volumes required.

*2The restricting flow rate is based on the 1 in 1 year equivalent greenfield rate calculated pro-rata from the whole site runoff rate of 1.2 l/s/ha (greenfield runoff calculations for all drainage areas are included in Appendix B). Where the rate is less than 1.0 l/s (i.e. for Area 8) a rate of 1.0 l/s has been used due to constraints in engineering design. Where the Area has more than one attenuation feature (i.e. for Areas 2, 3, 6 and 12) the flow control will be proportioned pro-rata based on the size of each attenuation feature, therefore ensuring the overall greenfield runoff rate will not be exceeded for each parcel.

*⁵ Basin depths of 1.0 m have been assumed throughout to allow gravity connections to be achieved. As noted earlier in Chapter 4 however a detailed topographic survey should be carried out as the design progresses to aid more detailed basin placement and the need for pumped outfalls. This will also dictate the need for the lining of any attenuations basins when considering seasonal groundwater peaks.

Consideration of Offsite SUDS System

- 4.8 The use of SUDS is a requirement of national policy as stipulated in the National Planning Policy Framework (NPPF). The NPPF planning practice guidance (para. 051) states the purpose of SUDS is to control surface water runoff as close to source as possible and to mimic natural drainage as closely as possible.
- 4.9 This is an ethos which is endorsed by Lead Local Flood Authorities and expanded on by the Construction Industry Research and Information Association (Ciria) as part of industry standard guidance relating to the SUDS management train. The SUDS management train is defined by Ciria below and included within the Cambridgeshire Flood and Water SPD:

'The management train concept promotes division of the area to be drained into subcatchments with different drainage characteristics and land uses, each with its own drainage strategy. Dealing with the water locally not only reduces the quantity that has to be managed at any one point, but also reduces the need for conveying the water off the site....

....Only if the water cannot be managed on site should it be (slowly) conveyed elsewhere. This may be due to the water requiring additional treatment before disposal or the quantities of runoff generated being greater than the capacity of the natural drainage system at that point.'

4.10 The Fenland Local Plan also supports the ethos of the SUDS management train incorporating on-site management of surface water run-off into Policy LP14:

In addition to the requirements of the NPPF and associated technical guide, all applications for relevant developments must include a drainage strategy to demonstrate that:

(a) suitable consideration has been given to surface water drainage;

(b) appropriate arrangements for attenuating surface water run-off can be accommodated within the site; and

(c) issues of ownership and maintenance are addressed. For foul drainage private infrastructure managed by residents groups or management companies should be avoided.

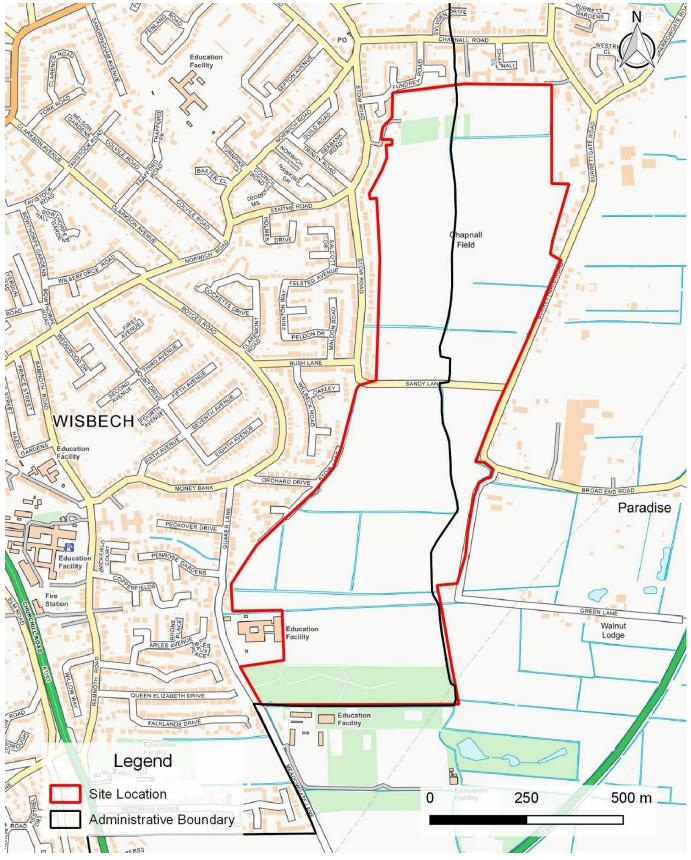
The use of Sustainable Drainage Systems (SuDs) will be required to ensure that runoff from the site (post development) is to Greenfield runoff rates for all previously undeveloped sites and for developed sites (where feasible). This should include sufficient area within the site to accommodate SuDS for the short term management of surface water drainage and where appropriate link to green / blue infrastructure to exploit opportunities for biodiversity, environmental, heritage, social and recreational enhancement and value. Schemes should complement the aims of the Cambridgeshire Green Infrastructure Strategy but should be retained and maintained primarily for the purpose for which they were designed, whilst being sensitive to the multi–functional benefits they can provide.

4.11 The Cambridgeshire Flood and Water SPD states that it is a Building Regulations and PPG requirement that the discharge hierarchy is used when considering proposals. This is defined as:

'Rainwater shall discharge to the following, listed in order of priority:

- To ground in an adequate soakaway or some other adequate infiltration system; or where that is not reasonably practicable
- A watercourse; or where that is not reasonably practicable
- A surface water sewer, highway drain or other drainage system: or where that is not reasonably practicable
- A combined sewer'
- 4.12 Sufficient evidence must therefore be provided to prove that surface water cannot be adequately managed within the site, before off-site SUDS systems are considered, as off-site management is considered contrary to local policy and the ethos of Sustainable drainage systems. However based on this assessment it is evident that surface water can be managed at source and within the boundary of the Site.
- 4.13 Source control SUDS methods promote water quality improvements and help to minimise the impact of development on the surrounding area. Therefore again on this basis an Offsite system would be deemed inappropriate as the potential water quality benefits would be limited.
- 4.14 Providing sufficient falls to the proposed drainage system would also be an issue when providing off-site SUDS features. As the site is largely flat, water transmission features such as pipes and ditches will need to deepen with increasing length to maintain design standard flow rates. An off-site location, at some distance from the source of run-off may lead to overly deep end of network SUDS features in order to maintain flow gradients. This may produce public safety concerns and increase development costs.
- 4.15 It is therefore not advised that the client seek opportunities to provide SUDS in offsite locations due to local and national policy considerations, water quality issues, the scale of proposed development and the hydrological complexity of the Site.

5.0 CONCLUSIONS AND RECOMMENDATIONS

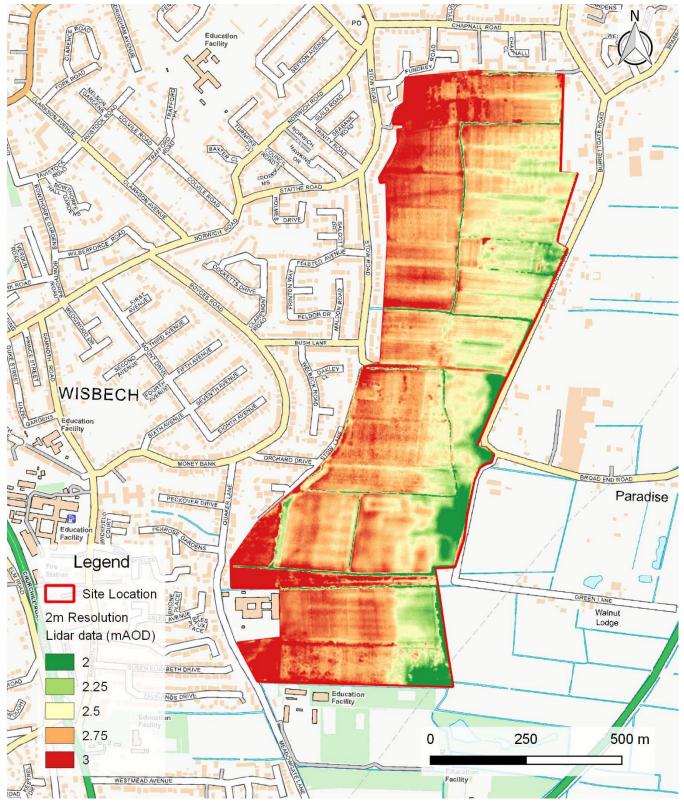

- 5.1 This assessment has considered the proposed development site positioned to the east of Wisbech, for which 1,450 dwellings are currently allocated. An overview of the Site and surrounding area's hydrogeology, hydrology and associated flood risks has been carried out to inform an appraisal of the potential SUDS options for the development of the Site.
- 5.2 This appraisal of SUDS options has found a number of source control and conveyance measures are potentially suitable for the scheme, including rainwater harvesting, green roofs, swales, filter strips and filter drains, subject to cost, structural and layout constraints as the scheme develops. For final outflow control a strategy using attenuation basins and flow control devices has been developed on the basis of 12 hydrological areas, which have been delineated based upon the IDB Drains and Ordinary Watercourses intersecting the Site.
- 5.3 The assessment has included a number of standard assumptions given the incipient phase of development and the associated lack of specific, detailed information. These include:
 - An assumed 60% impermeable area for each development parcel, which may change as a result of the final detailed design (dependent upon housing density);
 - Use of the FSR method for calculating rainfall volume;
 - All outfalls have been restricted to the equivalent 1 in 1 year greenfield run-off rate for the 60% impermeable area of each development parcel;
 - All basins have been designed on an assumed 1.0 m water depth;
 - All basins have been sized on the basis of the 1 in 100 year plus 40 % climate change storm.
- 5.4 Infiltration based drainage is assumed to be unsuitable for the scheme given the underlying geology and potential for shallow groundwater. Groundwater monitoring and subsequent infiltration testing should however be carried out as the design progresses to confirm whether any permeable surfacing can be utilised.
- 5.5 It is recommended that as the design progresses the conclusions of this report are used to inform the layout such that's the various SUDS options can be included where suitable, whilst the attenuation basins proposed can be located in more detail when considering other constraints, including highways and landscaping.

6.0 REFERENCES

- i. British Geological Survey Geoindex. Available at: www.bgs.ac.uk/geoindex (accessed, November 2017).
- ii. Environment Agency Groundwater Maps Available at: <u>http://maps.environment-</u> <u>agency.gov.uk/wiyby/wiybyController?x=357683&y=355134&scale=1&layerGroups=defaul</u> <u>t&ep=map&textonly=off&lang=_e&topic=groundwater</u> (accessed November 2017).
- iii. Environment Agency Flood Map for Planning. Available at: <u>https://flood-map-for-planning.service.gov.uk/</u> (accessed November 2017).
- iv. Environment Agency Surface Water Flood Maps and Reservoir Flood Maps. Available at: <u>https://flood-warning-information.service.gov.uk/long-term-flood-risk/</u> (accessed November 2017).
- v. Kings Lynn and West Norfolk Borough Council (2011) *Kings Lynn and West Norfolk Borough Council core strategy*. Kings Lynn and West Norfolk Borough Council.
- vi. Kings Lynn and West Norfolk Borough Council (2016) *Kings Lynn and West Norfolk Site Allocations Development Management Policies Plan.* Kings Lynn and West Norfolk Borough Council.
- vii. Fenland District Council (2010) Fenland District Council Strategic Flood Risk Assessment Level 1. Scott Wilson [Online] Available at: <u>http://www.fenland.gov.uk/CHttpHandler.ashx?id=3772&p=0</u> [Accessed 13/10/17].
- viii. Fenland District Council (2012) Wisbech Level 2 Strategic Flood Risk Assessment. WSP UK
 Limited. [Online] Available at: <u>http://www.fenland.gov.uk/article/3588/Wisbech-Strategic-Flood-Risk-Assessment-2</u> [Accessed 13/10/17].
- ix. Kings Lynn and West Norfolk Borough Council (2008) *Strategic Flood Risk Assessment*. Faber Maunsell.
- x. Kings Lynn and West Norfolk Borough Council (2005) *Strategic Flood Risk Assessment*. Bullen.
- xi. EDP, 2013. Photo galleries from the archives: How the floods of 1953, 1978 and 2007 affected the region [Online]. Available at: http://www.edp24.co.uk/news/weather/photo-galleries-from-the-archives-how-the-floods-of-1953-1978-and-2007-affected-the-region-1-3081153. [Accessed 13/11/17].
- Wisbech Cambridgeshire Community Archive Network, nd. Newspaper cutting highlighting damage to Wisbech properties due to flooding, [Online]. Available at: http://wisbech.ccan.co.uk/content/catalogue_item/newspaper-cutting-highlighting-damage-to-wisbech-properties-due-to-flooding [Accessed 13/11/17].
- xiii. Environment Agency (2009) *The Great Ouse Tidal River Strategy Draft For Consultation*. Environment Agency
- xiv. Environment Agency (2010) *Draft Great Ouse Catchment Flood Management Plan Summary Report Consultation Draft.* Environment Agency.
- xv. Environment Agency (2008) *River Nene Catchment Flood Management Plan.* Environment Agency.

- xvi. Reed, D. Faulkner, D. Robson, A. Houghton-Carr, H. Bayliss, A. (2008) *Flood Estimation Handbook*. Centre for Ecology and Hydrology. Natural Environmental Research Council.
- xvii. Woods-Ballard., et al. (2015) The SUDS Manual. Report C753. London: CIRIA.

FIGURES


Figure 1.1 Site Location

OS Mapping provided by OS open source mapping data (<u>www.ordnancesurvey.co.uk/opendatadownload</u>), accessed November 2017

Figure 1.2 Existing Site Layout

Satellite image provided by Google Earth, accessed November 2017

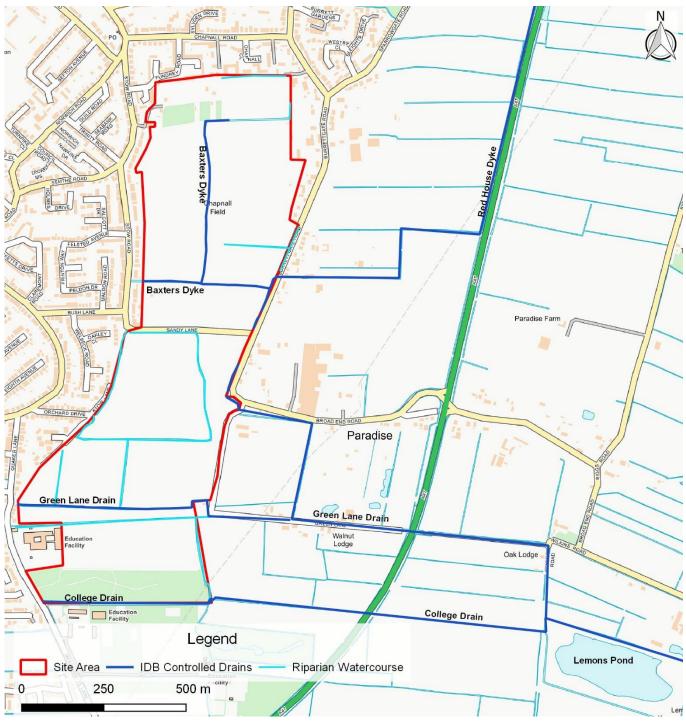


Figure 3.2 IDB and Riparian Watercourses

Source: Kings Lynn Internal Drainage Board

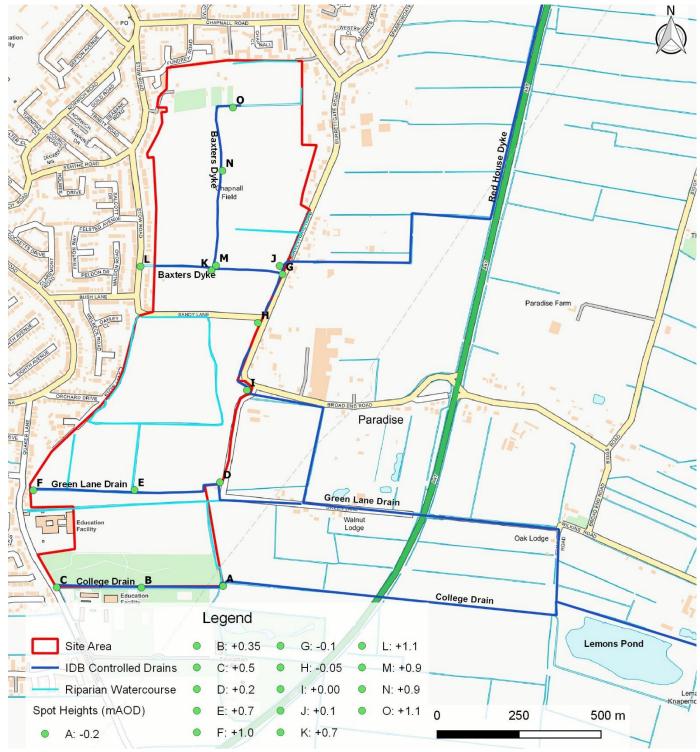
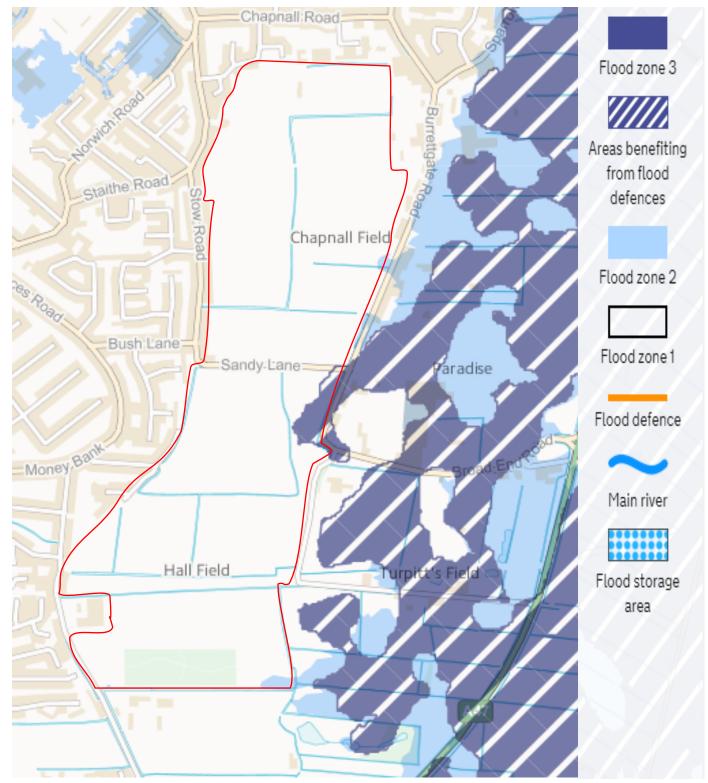
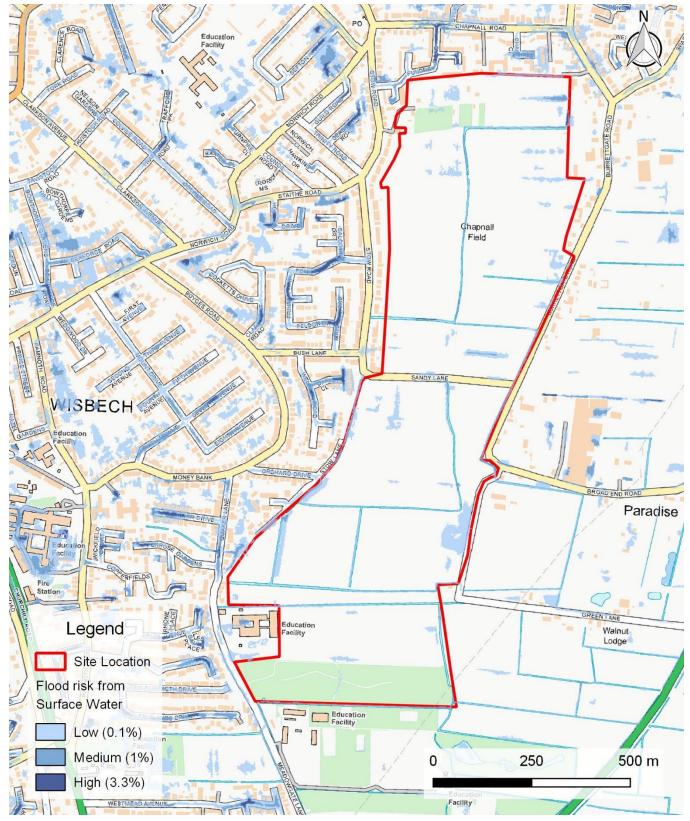




Figure 3.3 Spot Heights within IDB Land Drains

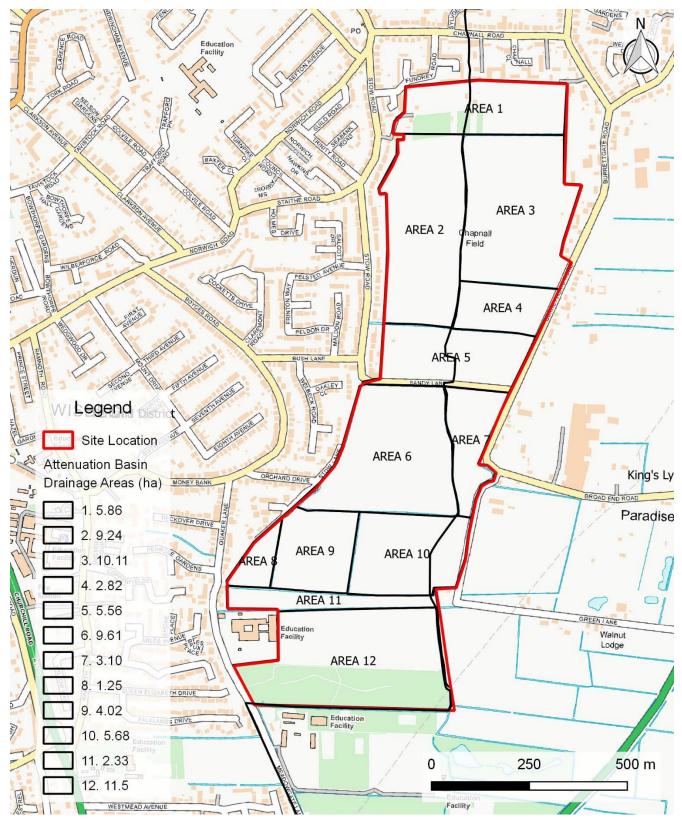

Source: Kings Lynn Internal Drainage Board

Figure 3.4 Environment Agency Flood Map Source: Environment Agency Website (accessed November 2017)

Figure 3.5 Environment Agency Surface Water Flood Map Source: Environment Agency Website (accessed November 2017)

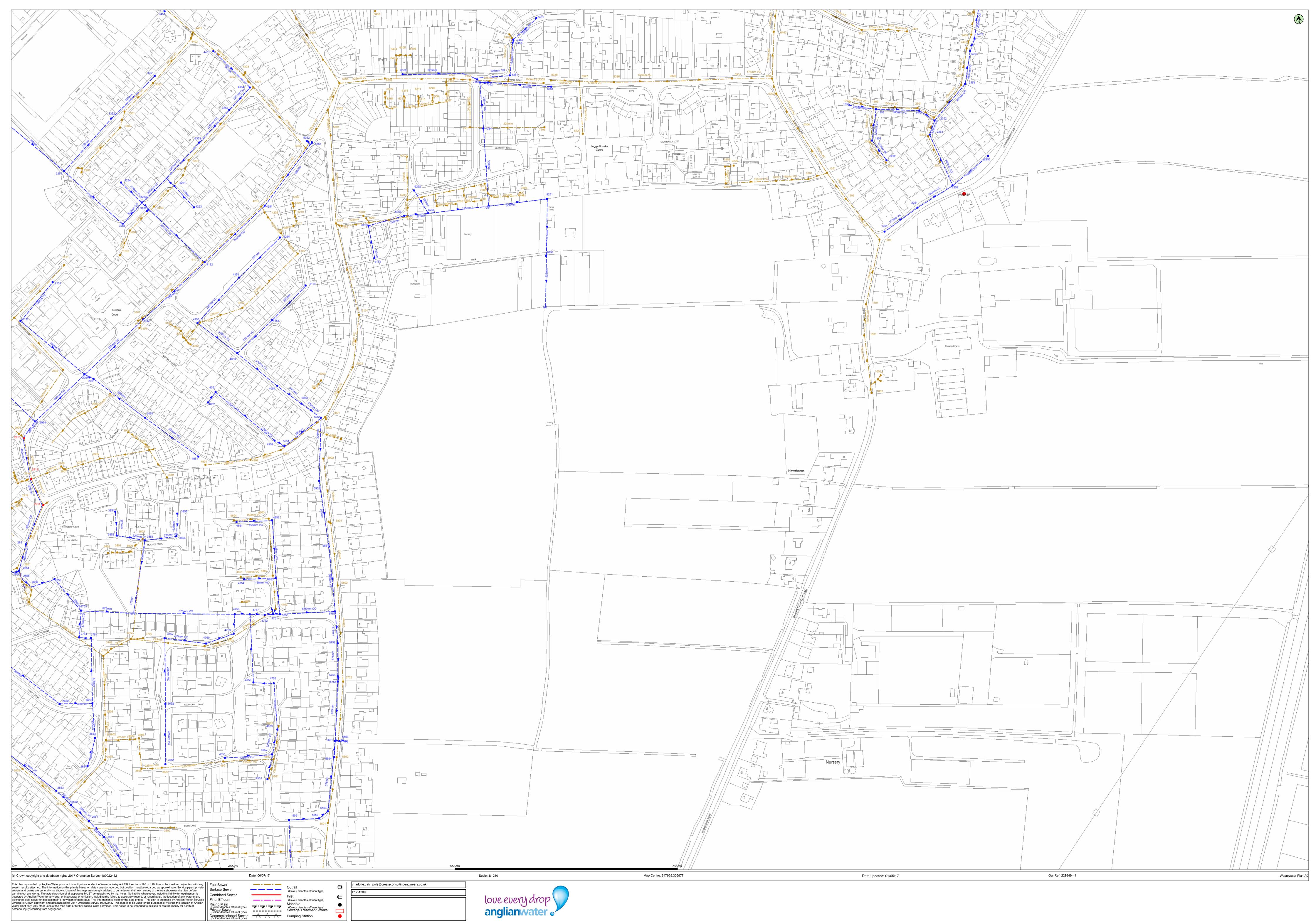
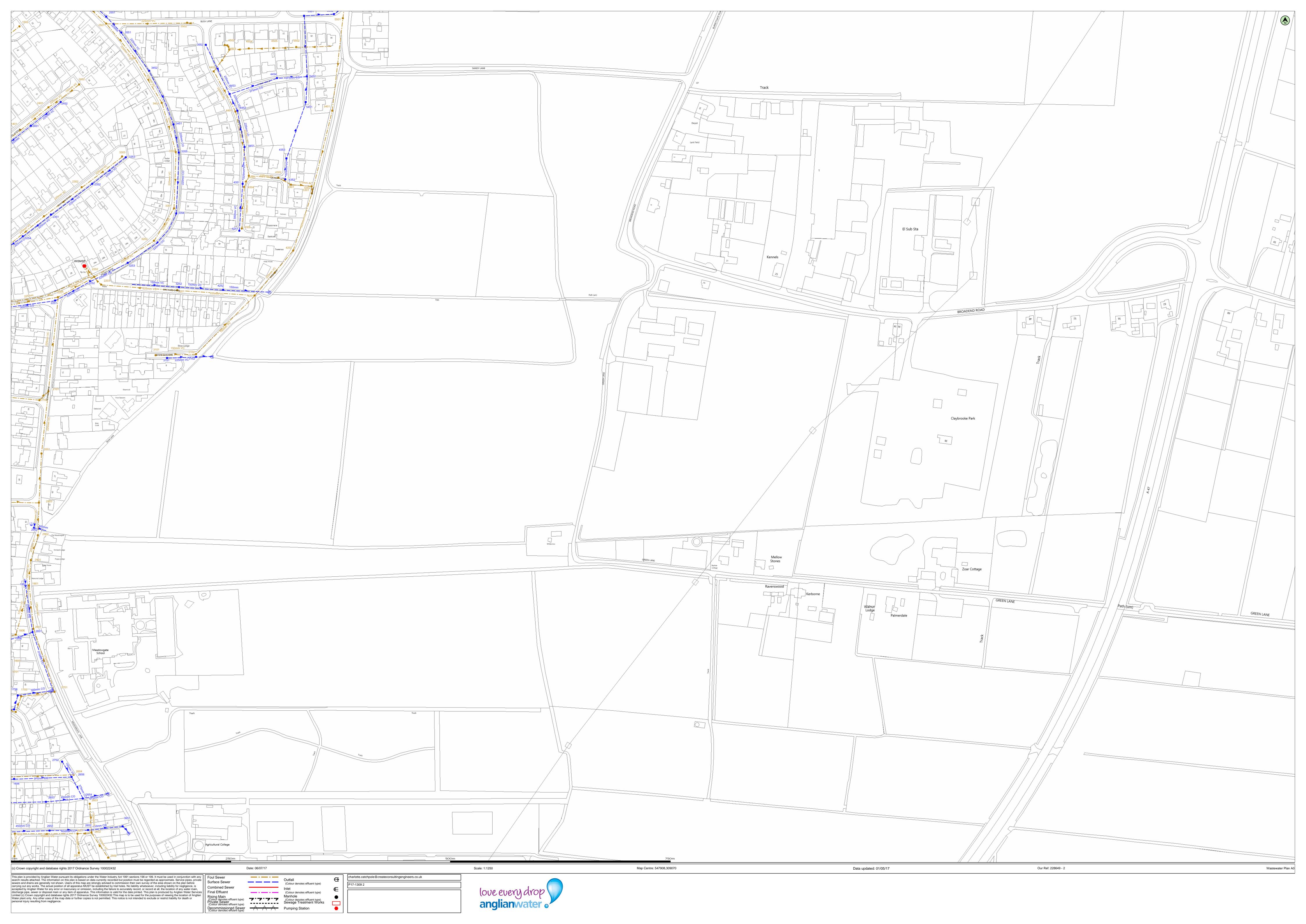


Figure 4.1 Attenuation Basin Drainage Areas

OS Mapping provided by OS open source mapping data (<u>www.ordnancesurvey.co.uk/opendatadownload</u>), accessed November 2017

APPENDICES

APPENDIX A


2911	rence Easting 547234	Northing 309904	Liquid T	3.77	vel Invert Leve	Depth to Inve
2912	547221	309933	С	3.76	1.93	1.83
2913 0201	547213 548096	309979 310271	C F	4.14	1.86 0.28	2.28
0202	548060	310269	F	-	0.43	-
)203)204	548003 548002	310266 310285	F F	3.01	0.71	2.3
0204 0205	548012	310285	F	-	1.31	-
0301	548010	310384	F	-	0.77	-
0302 0303	548055 548060	310384 310367	F F	2.8 0.55	-0.37 0.27	3.17 0.28
0304	548084	310328	F	3.07	-0.08	3.15
0403	548057	310437	F	1.13	0.56	0.57
1001 1002	548159 548167	310095 310030	F F	2.91	0.93	1.98 -
1003	548174	310045	F	-	-	-
1101	548161	310130	F	3.02	0.81	2.21
1201 1202	548117 548138	310278 310249	F F	2.89 2.92	0.15	2.74 2.63
1203	548176	310203	F	2.89	0.51	2.38
1204 1301	548183 548166	310289 310313	F F	2.61	1.78	0.83
1302	548142	310313	F	-	-	-
1303	548169	310352	F	2.74	1.3	1.44
1401 1402	548156 548186	310439 310439	F F	2.39 2.5	0.56	1.83 1.81
2002	547257	310056	F	4.04	2.43	1.61
2003	547294	310015	F	-	-	-
2101 2102	547258 547202	310174 310115	F F	4.2 3.83	3.03 2.72	1.17
2201	548244	310290	F	-	-	-
2201	547278	310283	F	3.9	2.68	1.22
2301 2302	548219 548237	310351 310340	F F	- 2.67	- 0.87	- 1.8
2303	548231	310319	F	-	-	-
2304	548268	310377	F	-	-	-
2401 2402	548207 548274	310437 310418	F F	- 2.32	- 0.27	- 2.05
2403	548280	310434	F	-	-	-
2406	548282	310458	F	-	-	-
2501 2502	547286 547257	309540 309567	F F	3.73 3.85	0.4	3.33 3.36
2502 2602	547257	309567	F F	3.85	0.49 1.52	2.38
2701	547219	309792	F	3.24	1.4	1.84
2702 2801	547218 547205	309795 309833	F F	3.1 3.89	1.41 1.58	1.69 2.31
2801 2802	547205	309833	F	3.89	1.58	1.988
2803	547221	309808	F	3.1	1.462	1.638
2904 2905	547207 547298	309984 309956	F F	4.14	1.17 2.72	2.97 1.38
2905 2906	547298	309956 309947	F	4.1	2.72	1.38
2907	547259	309944	F	4.08	2.44	1.64
2914 2915	547210 547205	309910 309902	F F	-	-	-
2915 2916	547205	309932	F	-	-	-
2917	547206	309929	F	-	-	-
2918 2919	547203 547202	309934 309937	F F	-	-	-
3000	547310	310029	F	-	-	-
3001 3002	547395 547389	310089 310100	F F	-	-	-
3002	547392	310093	F	-	-	-
3101	547346	310115	F	4.28	2.62	1.66
3102 3104	547321 547343	310185 310103	F F	3.83	2.84	0.99
3105	547378	310108	F	-	-	-
3201 3202	547398 547392	310292 310275	F F	3.37 3.65	2.3 2.37	1.07 1.28
3202	547359	310273	F	3.86	2.53	1.33
3204	547332	310213	F	3.94	2.71	1.23
3301	547326	310347	F	3.92	2.36	1.56
3302 3303	547321 547358	310329 310379	F F	3.81 4.01	2.38 2.21	1.43 1.8
3501	547318	309501	F	3.68	0.15	3.53
3502	547378	309541	F	3.33	1.82	1.51
3601 3602	547304 547305	309617 309639	F F	3.11 3.04	0.77	2.34 2.22
3603	547304	309668	F	3.24	0.87	2.37
3604	547332	309640	F	-	-	-
3605 3606	547342 547345	309641 309607	F F	-	-	-
3607	547368	309608	F	3.23	1.11	2.12
3701	547302	309734	F	3.72	-	-
3702 3704	547311 547333	309742 309753	F F	3.34 3.7	1.25 1.67	2.09 2.03
3704 3705	547347	309754	F	-	-	-
3800	547331	309851	F	-	-	-
3801	547318	309850	F	-	-	-
3802 3803	547307 547347	309850 309866	F F	-	-	-
3900	547354	309966	F	-	-	-
3901	547374	309935	F	-	-	-
3902 3903	547350 547339	309972 309979	F F	-	-	-
3904	547330	309986	F	-	-	-
4000	547400	310085	F	-	-	-
4101 4102	547414 547459	310177 310126	F F	4.11	2.22	1.89 -
4102 4103	547459 547411	310126	F	-	-	-
4201	547480	310240	F	3.73	1.88	1.85
4202 4301	547488 547471	310228 310374	F	3.737 3.49	2.017 1.76	1.72 1.73
4301	547460	310388	F	3.49	1.74	1.73
4303	547462	310391	F	-	-	-
4401 4402	547403 547401	310436 310429	F F	4.02	1.57 1.9	2.45 2.11
4501	547489	309596	F	-	-	-
4502 4503	547424 547426	309515 309510	F	-	-	-
4503 4504	547428	309512	F	-	-	-
4505	547476	309512	F	-	-	-
4601 4602	547437 547494	309615 309618	F	- 2.79	- 1.54	- 1.25
4603	547499	309655	F	-	-	-
4701	547416	309745	F	-	-	-
4702 4703	547445 547496	309753 309787	F F	2.79 2.8	1.67 1.8	1.12
4704	547463	309794	F	-	-	-
4801 4802	547457 547493	309823 309824	F F	- 2.93	- 1.95	- 0.98
4802 4803	547493 547488	309824 309889	F F	3.34	-	-
4804	547449	309887	F	-	-	-
4901 4902	547417 547468	309949 309955	F F	3.84 3.42	2.3 2.28	1.54 1.14
4902 5001	547468 547552	309955	F	4	2.28	1.14 1.98
5002	547583	310059	F	4.37	1.87	2.5
5003 5004	547547 547540	310044 310036	F F	-	-	-
5004 5101	547540 547590	310036	F	- 4.09	- 1.75	- 2.34
5102	547521	310187	F	-	-	-
5203 5204	547564 547595	310221 310230	F F	3.55 3.549	1.55 1.949	2
5204 5205	547595 547571	310230 310218	F F	3.549 3.696	1.949 1.546	1.6 2.15
5206	547502	310210	F	-	-	-
5207	547516	310218	F	-	-	-
5208 5209	547516 547515	310240 310244	F F	-	-	-
- -	547518	310229	F	-	-	-
5210	547558	310320	F	4.12	1.3	2.82
5301	547555 547530	310349 310306	F F	4.78 3.99	1.31 1.53	3.47 2.46
5301 5302	104/030	310306	F F	3.99 4.52	1.53	2.46 3.36
5301 5302 5303	547568		F	4.66	1.07	3.59
5301 5302 5303 5304 5401	547568 547531	310433			1	
5301 5302 5303 5304 5401 5501	547568 547531 547555	310433 309546	F	-	-	-
5301 5302 5303 5304 5401	547568 547531	310433		-	-	-
5301 5302 5303 5304 5401 5501 5502 5602 5702	547568 547531 547555 547502 547565 547572	310433 309546 309513 309620 309705	F F F F	- - - 3.35	- - - -	3.35
5301 5302 5303 5304 5401 5501 5502	547568 547531 547555 547502 547565	310433 309546 309513 309620	F F F	- - 3.35 3.37 3.16	- - - - 1.67 1.48	

Manhole Reference	547550	Northing 309956	Liquid Type F	e Cover Leve 3.45	I Invert Level	Depth to Inve 1.49
5903 5904	547554 547570	309983 309979	F F	-	-	-
3200 3201	547645 547601	310228 310222	F F	3.619 3.513	1.889 1.833	1.73 1.68
\$202 \$203	547644 547644	310296 310247	F F	3.326 3.232	2.286 1.922	1.04 1.31
204 205	547678 547699	310240 310243	F F	-	-	-
301 302	547697 547619	310384 310384	F	2.86 3.43	- 1.33	- 2.1
303	547628	310351	F	-	-	-
304 305	547619 547619	310357 310367	F F	-	-	-
306 307	547689 547689	310377 310358	F F	-	-	-
308 309	547673 547673	310359 310366	F F	-	-	-
310 311	547657 547657	310359 310364	F F	-	-	-
312 313	547647 547641	310352 310359	F	-	-	-
314	547641	310364	F	-	-	-
402 403	547608 547632	310460 310400	F	4.893 -	3.023	1.87 -
404 405	547632 547637	310410 310411	F F	-	-	-
406 200	547648 547735	310410 310254	F F	- 3.159	- 2.449	- 0.71
201 202	547731 547711	310266 310245	F	3.078	2.218	0.86
203 204	547727	310247	F	-	-	-
205	547742 547771	310250 310253	F	-	-	-
206 301	547771 547758	310255 310381	F F	- 3.1	- 1.99	- 1.11
303 305	547715 547798	310383 310379	F	2.868 -	1.638 -	1.23 -
306	547799	310329	F F	3.271	2.351	0.92
307 402	547715 547762	310329 310430	F	3.053 3.09	1.933 2.15	0.94
326 327	547877 547838	310380 310381	F F	- 3.07	- 1.43	- 1.64
328 329	547806 547842	310382 310322	F F	-	-	-
326 251	547937 548182	310381 310212	F S	2.92 2.71	1.05 1.72	1.87 0.99
252 351	548184 548168	310292 310314	S S	- 2.62	- 1.56	- 1.06
352	548142	310354	S	2.62	1.64	1.26
353 051	548172 547291	310350 310046	S S	- 3.914	- 2.094	- 1.82
054 151	547281 547245	310051 310155	S S	4.27 4.086	1.91 2.676	2.36 1.41
2152 2251	547209 548219	310111 310239	S S	3.92	2.4	1.52 -
251	547258 548258	310280 310264	S S S	3.91 2.36	2.47 1.06	1.44 1.3
253	548298	310297	S	-	-	-
351 352	548221 548238	310348 310337	S S	2.75	1.12 -	1.63 -
353 354	548233 548272	310321 310378	S S	2.88 2.4	0.81 0.51	2.07 1.89
451 452	548278 548283	310415 310429	S S	- 2.33	- 0.33	- 2
551 552	547286 547266	309548 309566	S S	3.724 3.89	2.444 2.51	1.28 1.38
553	547249	309582	S	3.818	2.468	1.35
651 652	547290 547253	309681 309680	S S	3.358 3.335	1.568 1.685	1.79 1.65
:653 :654	547293 547284	309641 309610	S S	3.011 3.108	1.661 1.748	1.35 1.36
751 753	547288 547277	309754 309785	S S	3.362 3.199	1.502 1.319	1.86 1.88
2754 2851	547275	309755	S S	3.51 3.91	1.61 1.71	1.9 2.2
2852	547215 547203	309860 309827	S	-	-	-
2853 2854	547247 547207	309821 309830	S S	3.099 3.903	1.549 1.703	1.55 2.2
2855 2856	547210 547221	309821 309812	S S	3.569 3.1	1.692 1.636	1.877 1.464
2954 3051	547225 547349	309998 310002	S S	4.18 3.952	1.85 2.792	2.33 1.16
152	547347	310113	S	4.32	1.98	2.34
3251 3252	547382 547351	310263 310235	S S	3.64 3.933	2.39 2.603	1.25 1.33
253 254	547345 547322	310244 310267	S S	3.8 3.81	2.25 2.52	1.55 1.29
255 351	547324 547360	310220 310387	S S	3.766 3.974	2.276 2.814	1.49 1.16
352 451	547311 547371	310339 310460	S S	3.96 4.069	2.67 2.779	1.29 1.29
551	547303	309530	S	-	-	-
552 651	547399 547372	309516 309612	S S	3.19 -	1.95 -	1.24 -
652 751	547372 547336	309680 309782	S S	2.83 3.697	2 1.447	0.83 2.25
752 851	547371 547316	309754 309896	S S	3.03 3.327	1.73 2.217	1.3 1.11
852 853	547317 547349	309869 309864	S S S	3.241 3.41	2.151 2.03	1.09
854	547384	309869	S	3.246	2.186	1.06
855 051	547385 547428	309894 310031	S S	3.272 4.101	2.252 2.811	1.02 1.29
052 053	547420 547453	310019 310075	S S	4.046 3.8	2.916 2.43	1.13 1.37
054 151	547498 547455	310038 310160	S S	3.939 3.767	2.429 2.577	1.51 1.19
152 153	547416 547408	310177 310109	S S	4.12 3.95	2.11 2.46	2.01
154	547492	310112	S	3.595	2.495	1.1
251 253	547484 547404	310241 310239	S S	3.799 3.539	2.269 2.599	1.53 0.94
351 352	547760 547444	310388 310349	S S	3.2 3.38	1.94 2.62	1.26 0.76
353 354	547410 547467	310312 310374	S S	3.22 3.515	2.44 2.635	0.78 0.88
451 551	547426 547487	310415 309595	S S	3.786	2.866	0.92
651	547439	309619	S	-	-	-
652 653	547492 547498	309623 309651	S S	2.82 2.91	1.99 1.86	0.83 1.05
751 752	547493 547484	309781 309780	S S	2.83 2.83	-	-
755 756	547494 547471	309703 309704	S S	3.08	1.7 -	1.38 -
757 758	547467 547450	309781 309781	S S	- 3.46	- 1.3	- 2.16
759	547449	309759	S	2.71	1.47	1.24
760 851	547418 547452	309748 309885	S S	-	-	-
852 853	547492 547496	309886 309821	S S	3.31 2.99	1.69 1.46	1.62 1.53
854 951	547460 547409	309820 309958	S S	- 3.91	- 2.74	- 1.17
952	547495	309977	S	3.887 4.03	2.537	1.35
051 053	547547 547525	310002 310018	S S	3.975	2.3 2.415	1.73 1.56
151 254	547530 547501	310151 310205	S S	3.233 3.507	2.573 2.627	0.66 0.88
351 352	547537 547531	310312 310314	S S	4.022 3.397	2.372 2.697	1.65 0.7
551 552	547511 547545	309549 309551	S S S		-	-
553	547555	309559	S	-	-	-
651	547563	309638 309638	S S	3.294	1.044 -	2.25 -
653 654	547568 547562	309620	S			

Manhole Reference			. · · · · ·			
5753	Easting 547566			Cover Level 3.563	1.263	Depth to Invert 2.3
5754	547566	309705	S	3.447	1.227	2.22
5755 5851	547501 547556		S S	- 3.429	- 1.419	1.56 2.01
5951	547506	309970	S	3.569	2.509	1.06
5952 5151	547545 547607			3.317 3.27	1.787 2.71	1.53 0.56
6251	547601	310219	S	3.534	2.654	0.88
5252 5253	547652 547641				2.458 2.558	0.72 0.94
6254	547668	310232	S	3.243	1.853	1.39
352 251	547639 547736			3.331 3.267	2.561 1.797	0.77 1.47
'352	547735	310380	S	2.922	1.882	1.04
7353 7354	547726 547730			2.76 3.075	1.87 1.775	0.89 1.3
7451	547790			2.962	2.102	0.86
452	547764				2.047	0.86
7453 3151	547763 547801			2.933 3.083	2.013 1.463	0.92 1.62
3251	547802	310249	S	3.036	1.496	1.54
3351	547806	310375	S	3.151	2.261	0.89

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Inve

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert]	Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Inve
							-							
							-							
							-							
							-							
							-							
							-							
							-							
							-							
							-							
							-							
							-							
							-							
							•							
							•							
							•							
							1							1

401	erence Easting	Northing	Liquid Ty		vel Invert Leve	
501	547188 547181	309419 308593	F F	3.47 -	2.32 -	1.15 -
02 04	547187 547182	309537 308619	F	4.06 2.86	3.08 0.71	0.98 2.15
04	547183	308757	F	2.73	1.46	1.27
)5)6	547189 547183	308775 308845	F F	3.04 3.15	1.38 1.01	1.66 2.14
)1)1	547198 547212	308901 309051	F	3.46 2.83	0.34	3.12
)1	547220	309122	F	3.12	-0.3	3.42
)2)1	547210 547231	309112 309229	F F	3.09 3.41	0.93 -0.69	2.16 4.1
)2	547272	309252	F	3.57	-0.84	4.41
03 01	547280 547215	309243 309321	F F	3.09 3.68	-0.81 1.9	3.9 1.78
02 01	547258 547220	309354 309445	F F	3.75 3.72	2.31 2.59	1.44 1.13
02	547255	309443 309471	F	3.85	2.39	1
01 01	547255 547286	308597 309540	F F	- 3.73	- 0.4	- 3.33
02	547288	308591	F	-	-	-
601 602	547253 547269	308619 308620	F F	2.72 3.09	1.43 1.61	1.29 1.48
i03 i04	547267 547249	308653	F	-	-	-
04 01	547249	308686 308780	F	- 3.19	- 1.12	- 2.07
01 01	547203 547200	308852 308930	F F	3.22 3.42	0.88	2.34 3.15
02	547208	308958	F	3.05	0.15	2.9
003 01	547209 547342	308995 309163	F F	2.85 -	0.03	2.82 -
02 01	547388 547367	309164 309237	F F	2.92 3.02	0.74 -0.59	2.18 3.61
202	547340	309293	F	4.02	-0.53	4.55
301 302	547363 547365	309330 309394	F F	3.99 3.78	-0.4	4.39 3.98
803	547304	309389	F	3.91	2.56	1.35
01 501	547349 547318	309450 309501	F	3.95 3.68	0.01	3.94 3.53
502	547378	309541	F	3.33	1.82	1.51
201 202	547455 547498	309231 309282	F F	3.1 3.17	-0.2 -0.05	3.3 3.22
301 302	547496 547482	309357 309365	F F	2.93 2.88	0.66 0.37	2.27 2.51
03	547448	309367	F	9.91	7.28	2.63
804 805	547443 547440	309354 309307	F F	10 10.19	7.655 8.13	2.345 2.06
01	547433	309440	F	-	-	-
02 602	547408 547424	309486 309515	F F	3.03	0.91 -	2.12
503 504	547426 547448	309510 309512	F F	-	-	-
505	547476	309512	F	-	-	-
301 302	547520 547520	309347 309355	F F	-	-	-
401	547543	309441	F	-	-	-
501 502	547555 547502	309546 309513	F F	-	-	-
254 656	547191 547181	309298 308681	S S	3.69	2.2	1.49
755	547181	308760	S	2.74	1.75	0.99
756 356	547185 547186	308776 308842	S S	3.07 3.156	1.7	1.37 1.48
951	547194	308901	S	3.423	1.563	1.86
251 252	547228 547268	309225 309247	S S	3.46 3.46	2.41 2.41	1.05 1.05
51 52	547223 547270	309323 309358	S S	3.7 3.785	2.606 2.875	1.094 0.91
451	547200	309424	S	3.619	2.869	0.75
452 551	547234 547286	309451 309548	S S	3.87 3.724	3.14 2.444	0.73
651 652	547221 547265	308622 308623	S S	- 2.81	- 1.15	- 1.66
653	547205	308655	S	-	-	-
654 656	547259 547246	308659 308683	S S	3.51 2.99	1.2 1.36	2.31 1.63
752	547236	308700	S	2.92	1.64	1.28
851 952	547202 547204	308848 308966	S S	3.29 2.944	1.47 1.354	1.82 1.59
151	547355	309160	S	2.84	2.34	0.5
152 252	547388 547369	309161 309240	S S	- 3.69	- 2.88	- 0.81
253 353	547310 547308	309268 309388	S S	3.89 3.978	2.58 3.188	1.31 0.79
354 354	547365	309324	S	3.92	2.76	1.16
355 451	547368 547362	309394 309425	S S	3.74 4.027	2.92 2.877	0.82
452	547335	309486	S	3.77	-	-89
551 552	547303 547399	309530 309516	S S	- 3.19	- 1.95	- 1.24
651 251	547305 547437	308627 309305	S S	- 10.2	- 9.12	- 1.08
252	547419	309303	S	2.948	2.098	0.85
351 352	547441 547490	309358 309363	S S	10 2.94	8.9 1.72	1.1 1.22
353	547491	309387	S	-	-	-
151 152	547443 547435	309400 309441	S S	2.96 -	1.89 -	1.07 1.02
453 454	547426 547480	309460 309478	S S	2.86 2.82	1.69 1.56	1.17
454 451	547480 547513	309478 309451	S S	-	-	-
452 551	547514 547511	309480 309549	S S	-	-	-
552	547545	309551	S	-	-	-

Manhole Reference	 Northing	Liquid Type	Cover Level	

'el	Invert Level	Depth to Invert	Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert		Manhole Reference	E
												╞
												F
												F
												-
										-		-
												-
												F
										-		+
												F
												F
												+
												+
												1
												-
												F
												-
												+
												+
												F
												+
												+
												╞
												F
												ŧ
												t
												ļ
												F
												+
												+
												+
												F
												+
												-
												t
												+
												-
												f
												Ļ
												+
												+
												f
												Ļ
												╞
												f
												Ļ
												+
												╞
												╞
												F
										•		+
												+
												ŀ
												F
										•		ļ
												+
_												╞
												f
												F
												+
_												╞
												f
												F
												+
_												╞
												F
										•		t
												F
												f
												Ļ
												+
												F
												f

e	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
_						
_						
_						
_						
_						
_						
_						
_						

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert]	Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Inve
							-							
							-							
							-							
							-							
							-							
							-							
							-							
							-							
							-							
							-							
							•							
							-							
							•							
							-							
							•							
														1

APPENDIX B

East Wisbeach - Whole Site

Date:	31-Aug-17
By:	TF

OS Location	547700E 30960N
SAAR	<mark>566</mark> mm
Site area =	71 ha
	0.71 km ²
Soil WRA Class	2
Soil Type SPR Value	0.3

 $Qbar_{rural} = 0.00108 \text{ x} (AREA)^{0.89} \text{ X} (SAAR)^{1.17} \text{ X} (SOIL)^{2.17}$

Qbar = $0.097 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period		1	2	5	10	25	30	50	100	500
Growth Factor		0.85	0.89	1.29	1.65	2.25	2.37	2.83	3.56	5.02
	Q ₁ =	0.083	m³/s	=	82.53	/s	=	1.162	l/s/ha	
	Q ₂ =	0.086	m³/s	=	86.41	/s	=	1.217	l/s/ha	
	Q ₅ =	0.125	m³/s	=	125.25	/s	=	1.764	l/s/ha	
	Q ₁₀ =	0.160	m³/s	=	160.20	/s	=	2.256	l/s/ha	
	Q ₂₅ =	0.218	m³/s	=	218.46	/s	=	3.077	l/s/ha	
	Q ₃₀ =	0.230	m³/s	=	230.11	/s	=	3.241	l/s/ha	
	Q ₅₀ =	0.275	m³/s	=	274.78	/s	=	3.870	l/s/ha	
	Q ₁₀₀ =	0.346	m³/s	=	345.65	/s	=	4.868	l/s/ha	
	Q ₅₀₀ =	0.487	m³/s	=	487.41	/s	=	6.865	l/s/ha	

East Wisbech - Area 9

Date:	31-Aug-17
By:	TF

OS Location	547700E	309600N
SAAR	566	mm
Site area =	50	ha
	0.5	4 km ²
Soil WRA Class	2	
Soil Type SPR Value	0.3	

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2 5	10	25 30	50 100	500
Growth Factor	0.85 0	.89 1.29	1.65	2.25 2.37	2.83 3.56	5.02
	з,					
Q ₁ 50ha =	0.060 m ³ /s	=	60.41 l/s	=	1.208 l/s/ha	
Q ₂ 50ha =	0.063 m ³ /s	=	63.25 l/s	=	1.265 l/s/ha	
Q ₅ 50ha =	0.092 m ³ /s	=	91.67 l/s	=	1.833 l/s/ha	
Q ₁₀ 50ha =	0.117 m ³ /s	=	117.26 l/s	=	2.345 l/s/ha	
Q ₂₅ 50ha =	0.160 m ³ /s	=	159.90 l/s	=	3.198 l/s/ha	
Q ₃₀ 50ha =	0.168 m³/s	=	168.42 l/s	=	3.368 l/s/ha	
Q ₅₀ 50ha =	0.201 m ³ /s	=	201.11 l/s	=	4.022 l/s/ha	
Q ₁₀₀ 50ha =	0.253 m ³ /s	=	252.99 l/s	=	5.060 l/s/ha	
Q ₅₀₀ 50ha =	0.357 m ³ /s	=	356.75 l/s	=	7.135 l/s/ha	
Factored for Development Site area =	4.02 ha					
Q _{bar} site =	0.006 m ³ /s	=	5.71 l/s	=	1.42 l/s/ha	
Q ₁ site =	0.005 m ³ /s	=	4.86 l/s	=	1.21 l/s/ha	
Q ₂ site =	0.005 m ³ /s	=	5.09 l/s	=	1.26 l/s/ha	
Q ₅ site =	0.007 m ³ /s	=	7.37 l/s	=	1.83 l/s/ha	
Q ₁₀ site =	0.009 m³/s	=	9.43 l/s	=	2.35 l/s/ha	
Q ₂₅ site =	0.013 m ³ /s	=	12.86 l/s	=	3.20 l/s/ha	
Q ₃₀ site =	0.014 m ³ /s	=	13.54 l/s	=	3.37 l/s/ha	
Q ₅₀ site =	0.016 m ³ /s	=	16.17 l/s	=	4.02 l/s/ha	
Q ₁₀₀ site =	0.020 m ³ /s	=	20.34 l/s	=	5.06 l/s/ha	
Q ₅₀₀ site =	0.029 m ³ /s	=	28.68 l/s	=	7.13 l/s/ha	

East Wisbech - Area 10

Date:	31-Aug-17
By:	TF

OS Location	547700E	309600N
SAAR	566	mm
Site area =	50	ha
	0.5	4 km ²
Soil WRA Class	2	
Soil Type SPR Value	0.3	

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2 5	10	25 30	50 100	500
Growth Factor	0.85 (0.89 1.29	1.65	2.25 2.37	2.83 3.56	5.02
	34					
Q ₁ 50ha =	0.060 m ³ /s	=	60.41 l/s	=	1.208 l/s/ha	
Q ₂ 50ha =	0.063 m ³ /s	=	63.25 l/s	=	1.265 l/s/ha	
Q ₅ 50ha =	0.092 m ³ /s	=	91.67 l/s	=	1.833 l/s/ha	
Q ₁₀ 50ha =	0.117 m³/s	=	117.26 l/s	=	2.345 l/s/ha	
Q ₂₅ 50ha =	0.160 m³/s	=	159.90 l/s	=	3.198 l/s/ha	
Q ₃₀ 50ha =	0.168 m³/s	=	168.42 l/s	=	3.368 l/s/ha	
Q ₅₀ 50ha =	0.201 m ³ /s	=	201.11 l/s	=	4.022 l/s/ha	
Q ₁₀₀ 50ha =	0.253 m ³ /s	=	252.99 l/s	=	5.060 l/s/ha	
Q ₅₀₀ 50ha =	0.357 m ³ /s	=	356.75 l/s	=	7.135 l/s/ha	
Site area =	<mark>5.68</mark> ha					
Q _{bar} site =	0.008 m ³ /s	=	8.07 l/s	=	1.42 l/s/ha	
Q ₁ site =	0.007 m ³ /s	=	6.86 l/s	=	1.21 l/s/ha	
Q ₂ site =	0.007 m ³ /s	=	7.18 l/s	=	1.26 l/s/ha	
Q₅site =	0.010 m ³ /s	=	10.41 l/s	=	1.83 l/s/ha	
Q ₁₀ site =	0.013 m³/s	=	13.32 l/s	=	2.35 l/s/ha	
Q ₂₅ site =	0.018 m ³ /s	=	18.16 l/s	=	3.20 l/s/ha	
Q ₃₀ site =	0.019 m ³ /s	=	19.13 l/s	=	3.37 l/s/ha	
Q ₅₀ site =	0.023 m ³ /s	=	22.85 l/s	=	4.02 l/s/ha	
Q ₁₀₀ site =	0.029 m ³ /s	=	28.74 l/s	=	5.06 l/s/ha	
Q ₅₀₀ site =	0.041 m ³ /s	=	40.53 l/s	=	7.13 l/s/ha	
	0.0.11 /-		10100 1/0		,110 1,5,110	

East Wisbech - Area 11

Date:	31-Aug-17
By:	TF

OS Location	547700E	309600N
SAAR	566	mm
Site area =	50	ha
	0.5	4 km ²
Soil WRA Class	2	
Soil Type SPR Value	0.3	

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2 5	10	25 30	50 100	500
Growth Factor	0.85	0.89 1.29	1.65	2.25 2.37	2.83 3.56	5.02
Q ₁ 50ha =	0.060 m ³ /s	=	60.41 l/s	=	1.208 l/s/ha	
Q ₂ 50ha =	0.063 m ³ /s	=	63.25 l/s	=	1.265 l/s/ha	
$Q_{5} 50ha =$	0.092 m ³ /s	=	91.67 l/s	=	1.833 l/s/ha	
$Q_{10} 50ha =$	0.052 m/s	=	117.26 l/s	=	2.345 l/s/ha	
$Q_{10} = Q_{25} = 0$	$0.117 \text{ m}^{3}/\text{s}$	=	117.20 l/s	=	3.198 l/s/ha	
	0.160 m ³ /s					
Q ₃₀ 50ha =		=	168.42 l/s	=	3.368 l/s/ha	
Q ₅₀ 50ha =	0.201 m ³ /s	=	201.11 l/s	=	4.022 l/s/ha	
Q ₁₀₀ 50ha =	0.253 m ³ /s	=	252.99 l/s	=	5.060 l/s/ha	
Q ₅₀₀ 50ha =	0.357 m ³ /s	=	356.75 l/s	=	7.135 l/s/ha	
<u>Factored for Development Ir</u> Site area =	<u>mpermeable Are</u> 2.33 ha	28				
Q _{bar} site =	0.003 m ³ /s	=	3.31 l/s	=	1.42 l/s/ha	
Q ₁ site =	0.003 m³/s	=	2.81 l/s	=	1.21 l/s/ha	
Q ₂ site =	0.003 m ³ /s	=	2.95 l/s	=	1.26 l/s/ha	
Q₅site =	0.004 m ³ /s	=	4.27 l/s	=	1.83 l/s/ha	
Q ₁₀ site =	0.005 m³/s	=	5.46 l/s	=	2.35 l/s/ha	
Q ₂₅ site =	0.007 m ³ /s	=	7.45 l/s	=	3.20 l/s/ha	
Q ₃₀ site =	0.008 m³/s	=	7.85 l/s	=	3.37 l/s/ha	
	0.009 m³/s	=	9.37 l/s	=	4.02 l/s/ha	
Q ₅₀ site =			1 -			
Q ₅₀ site = Q ₁₀₀ site =	0.012 m ³ /s	=	11.79 l/s	=	5.06 l/s/ha	

East Wisbech - Area 12

Date:	31-Aug-17
By:	TF

OS Location	547700E	309600N
SAAR	566	mm
Site area =	50	ha
	0.5	4 km ²
Soil WRA Class	2	
Soil Type SPR Value	0.3	

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Growth Factor 0.85 Q_1 50ha = 0.060 Q_2 50ha = 0.063 Q_5 50ha = 0.092 Q_{10} 50ha = 0.117 Q_{25} 50ha = 0.160 Q_{30} 50ha = 0.168 Q_{50} 50ha = 0.201 Q_{100} 50ha = 0.253 Q_{500} 50ha = 0.357 Factored for Development Impermeab Site area = 11.5 Q_{bar} site = 0.016 Q_1 site = 0.014 Q_2 site = 0.021 Q_5 site = 0.021	$m^{3}/s = m^{3}/s = m^{3$	29 1.65 60.41 l/s 63.25 l/s 91.67 l/s 117.26 l/s 159.90 l/s 168.42 l/s 201.11 l/s	2.25 2.37 = = = = = = =	2.83 3.56 1.208 l/s/ha 1.265 l/s/ha 1.833 l/s/ha 2.345 l/s/ha 3.198 l/s/ha 3.368 l/s/ha	5.02
$\begin{array}{rcl} Q_2 \ 50ha = & 0.063 \\ Q_5 \ 50ha = & 0.092 \\ Q_{10} \ 50ha = & 0.117 \\ Q_{25} \ 50ha = & 0.160 \\ Q_{30} \ 50ha = & 0.168 \\ Q_{50} \ 50ha = & 0.201 \\ Q_{100} \ 50ha = & 0.253 \\ Q_{500} \ 50ha = & 0.357 \end{array}$	$m^{3}/s = m^{3}/s = m^{3$	63.25 l/s 91.67 l/s 117.26 l/s 159.90 l/s 168.42 l/s	= = = =	1.265 l/s/ha 1.833 l/s/ha 2.345 l/s/ha 3.198 l/s/ha	
$\begin{array}{rcl} Q_2 \ 50ha = & 0.063 \\ Q_5 \ 50ha = & 0.092 \\ Q_{10} \ 50ha = & 0.117 \\ Q_{25} \ 50ha = & 0.160 \\ Q_{30} \ 50ha = & 0.168 \\ Q_{50} \ 50ha = & 0.201 \\ Q_{100} \ 50ha = & 0.253 \\ Q_{500} \ 50ha = & 0.357 \end{array}$	$m^{3}/s = m^{3}/s = m^{3$	63.25 l/s 91.67 l/s 117.26 l/s 159.90 l/s 168.42 l/s	= = =	1.265 l/s/ha 1.833 l/s/ha 2.345 l/s/ha 3.198 l/s/ha	
$Q_{5} 50ha = 0.092$ $Q_{10} 50ha = 0.117$ $Q_{25} 50ha = 0.160$ $Q_{30} 50ha = 0.168$ $Q_{50} 50ha = 0.201$ $Q_{100} 50ha = 0.253$ $Q_{500} 50ha = 0.357$ Factored for Development Impermeab Site area = 11.5 $Q_{bar} site = 0.016$ $Q_{1} site = 0.014$ $Q_{2} site = 0.015$ $Q_{5} site = 0.021$	$m^{3}/s = m^{3}/s = m^{3$	91.67 l/s 117.26 l/s 159.90 l/s 168.42 l/s	= = =	1.833 l/s/ha 2.345 l/s/ha 3.198 l/s/ha	
$Q_{10} 50ha = 0.117$ $Q_{25} 50ha = 0.160$ $Q_{30} 50ha = 0.168$ $Q_{50} 50ha = 0.201$ $Q_{100} 50ha = 0.253$ $Q_{500} 50ha = 0.357$ Factored for Development Impermeab Site area = 11.5 $Q_{bar} site = 0.016$ $Q_{1} site = 0.014$ $Q_{2} site = 0.015$ $Q_{5} site = 0.021$	$m^{3}/s = m^{3}/s = m^{3$	117.26 l/s 159.90 l/s 168.42 l/s	=	2.345 l/s/ha 3.198 l/s/ha	
$Q_{25} 50ha = 0.160$ $Q_{30} 50ha = 0.168$ $Q_{50} 50ha = 0.201$ $Q_{100} 50ha = 0.253$ $Q_{500} 50ha = 0.357$ Factored for Development Impermeab Site area = 11.5 $Q_{bar} site = 0.016$ $Q_{1} site = 0.014$ $Q_{2} site = 0.015$ $Q_{5} site = 0.021$	$m^{3}/s = m^{3}/s = m^{3}/s =$	159.90 l/s 168.42 l/s	=	3.198 l/s/ha	
$Q_{30} 50ha = 0.168$ $Q_{50} 50ha = 0.201$ $Q_{100} 50ha = 0.253$ $Q_{500} 50ha = 0.357$ Factored for Development Impermeab Site area = 11.5 $Q_{bar} site = 0.016$ $Q_1 site = 0.014$ $Q_2 site = 0.015$ $Q_5 site = 0.021$	m^3/s = m^3/s =	168.42 l/s			
$Q_{50} 50ha = 0.201$ $Q_{100} 50ha = 0.253$ $Q_{500} 50ha = 0.357$ Factored for Development Impermeab Site area = 11.5 $Q_{bar} site = 0.016$ $Q_1 site = 0.014$ $Q_2 site = 0.015$ $Q_5 site = 0.021$	m ³ /s =	-	=	3.368 1/5/11a	
$Q_{100} 50ha = 0.253$ $Q_{500} 50ha = 0.357$ Factored for Development Impermeab Site area = 11.5 $Q_{bar} site = 0.016$ $Q_{1} site = 0.014$ $Q_{2} site = 0.015$ $Q_{5} site = 0.021$		201.11 I/s			
$Q_{500} 50ha = 0.357$ Factored for Development Impermeab Site area = 11.5 $Q_{bar} site = 0.016$ $Q_1 site = 0.014$ $Q_2 site = 0.015$ $Q_5 site = 0.021$	m/s =		=	4.022 l/s/ha	
Factored for Development Impermeab Site area = 11.5 Q_{bar} site = 0.016 Q_1 site = 0.014 Q_2 site = 0.015 Q_5 site = 0.021		252.99 l/s	=	5.060 l/s/ha	
Site area = 11.5 Q_{bar} site = 0.016 Q_1 site = 0.014 Q_2 site = 0.015 Q_5 site = 0.021	m ^o /s =	356.75 l/s	=	7.135 l/s/ha	
$Q_1 \text{ site} = 0.014$ $Q_2 \text{ site} = 0.015$ $Q_5 \text{ site} = 0.021$					
$Q_2 site = 0.015$ $Q_5 site = 0.021$	m ³ /s =	16.34 l/s	=	1.42 l/s/ha	
Q ₅ site = 0.021	m ³ /s =	13.89 l/s	=	1.21 l/s/ha	
5	m ³ /s =	14.55 l/s	=	1.26 l/s/ha	
	m ³ /s =	21.08 l/s	=	1.83 l/s/ha	
Q ₁₀ site = 0.027	m ³ /s =	26.97 l/s	=	2.35 l/s/ha	
Q ₂₅ site = 0.037	m ³ /s =	36.78 l/s	=	3.20 l/s/ha	
Q_{30} site = 0.039	m ³ /s =	38.74 l/s	=	3.37 l/s/ha	
Q ₅₀ site = 0.046		46.26 l/s	=	4.02 l/s/ha	
Q_{100} site = 0.058	m [°] /s =	58.19 l/s	=	5.06 l/s/ha	
Q_{500} site = 0.082		82.05 l/s	=	7.13 l/s/ha	

East Wisbech - Area 1

Date:	31-Aug-17
By:	TF

OS Location	547700E	309600N
SAAR	566	mm
Site area =	50	ha
	0.5	4 km ²
Soil WRA Class	2	
Soil Type SPR Value	0.3	

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2	5	10	25	30	50	100	500
Growth Factor	0.85	0.89	1.29	1.65	2.25	2.37	2.83	3.56	5.02
Q ₁ 50ha =	0.060 m ³ /s		=	60.41 l/s		=	1.208 l/s/ha		
$Q_1 50ha = Q_2 50ha =$	0.063 m ³ /s								
_	0.003 m ³ /s		=	63.25 l/s		=	1.265 l/s/ha		
Q₅ 50ha =			=	91.67 l/s		=	1.833 l/s/ha		
Q ₁₀ 50ha =	0.117 m ³ /s		=	117.26 l/s		=	2.345 l/s/ha		
Q ₂₅ 50ha =	0.160 m ³ /s		=	159.90 l/s		=	3.198 l/s/ha		
Q ₃₀ 50ha =	0.168 m ³ /s		=	168.42 l/s		=	3.368 l/s/ha	I	
Q ₅₀ 50ha =	0.201 m ³ /s		=	201.11 l/s		=	4.022 l/s/ha	I	
Q ₁₀₀ 50ha =	0.253 m ³ /s	;	=	252.99 l/s		=	5.060 l/s/ha	I	
Q ₅₀₀ 50ha =	0.357 m³/s	5	=	356.75 l/s		=	7.135 l/s/ha	I	
<u>Factored for Development In</u> Site area =	npermeable Ar 5.86 ha	<u>ea</u>							
Q _{bar} site =	0.008 m ³ /s	5	=	8.33 l/s		=	1.42 l/s/ha	l	
Q ₁ site =	0.007 m³/s	5	=	7.08 l/s		=	1.21 l/s/ha	I	
Q ₂ site =	0.007 m ³ /s	;	=	7.41 l/s		=	1.26 l/s/ha	I	
Q₅site =	0.011 m ³ /s	5	=	10.74 l/s		=	1.83 l/s/ha	I	
Q ₁₀ site =	0.014 m³/s	5	=	13.74 l/s		=	2.35 l/s/ha	I	
Q ₂₅ site =	0.019 m³/s	5	=	18.74 l/s		=	3.20 l/s/ha	l	
Q ₃₀ site =	0.020 m ³ /s	5	=	19.74 l/s		=	3.37 l/s/ha	I	
Q ₅₀ site =	0.024 m ³ /s	5	=	23.57 l/s		=	4.02 l/s/ha	l	
Q ₁₀₀ site =	0.030 m ³ /s	5	=	29.65 l/s		=	5.06 l/s/ha	I	
Q ₅₀₀ site =	0.042 m ³ /s	5	=	41.81 l/s		=	7.13 l/s/ha	1	

East Wisbech - Area 2

Date:	31-Aug-17
By:	TF

547700E	309600N
566	mm
50	ha
0.5	4 km ²
2	
0.3	
	50 0.5 2

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2 5	10	25 30	50 100	500
Growth Factor	0.85	0.89 1.29	1.65	2.25 2.37	2.83 3.56	5.02
Q ₁ 50ha =	0.060 m ³ /s	=	60.41 l/s	=	1.208 l/s/ha	
$Q_2 50ha =$	0.063 m ³ /s	=	63.25 l/s	=	1.265 l/s/ha	
$Q_{5} 50ha =$	0.092 m ³ /s	=	91.67 l/s	=	1.833 l/s/ha	
$Q_{10} 50ha =$	0.052 m /s	=	117.26 l/s	=	2.345 l/s/ha	
$Q_{10} = Q_{25} = 0$	0.117 m/s $0.160 \text{ m}^3/\text{s}$	=	117.20 l/s	=	3.198 l/s/ha	
	0.160 m /s 0.168 m ³ /s					
Q ₃₀ 50ha =	0.168 m/s $0.201 \text{ m}^{3}/\text{s}$	=	168.42 l/s	=	3.368 l/s/ha	
Q ₅₀ 50ha =		=	201.11 l/s	=	4.022 l/s/ha	
Q ₁₀₀ 50ha =	0.253 m ³ /s	=	252.99 l/s	=	5.060 l/s/ha	
Q ₅₀₀ 50ha =	0.357 m³/s	=	356.75 l/s	=	7.135 l/s/ha	
Factored for Development Ir Site area =	npermeable Are 9.24 ha	28				
Q _{bar} site =	0.013 m ³ /s	=	13.13 l/s	=	1.42 l/s/ha	
Q ₁ site =	0.011 m³/s	=	11.16 l/s	=	1.21 l/s/ha	
Q ₂ site =	0.012 m ³ /s	=	11.69 l/s	=	1.26 l/s/ha	
Q₅site =	0.017 m ³ /s	=	16.94 l/s	=	1.83 l/s/ha	
Q_{10} site =	0.022 m ³ /s	=	21.67 l/s	=	2.35 l/s/ha	
Q ₂₅ site =	0.030 m ³ /s	=	29.55 l/s	=	3.20 l/s/ha	
Q ₃₀ site =	0.031 m ³ /s	=	31.12 l/s	=	3.37 l/s/ha	
Q ₅₀ site =	0.037 m ³ /s	=	37.17 l/s	=	4.02 l/s/ha	
Q ₁₀₀ site =	0.047 m ³ /s	=	46.75 l/s	=	5.06 l/s/ha	

East Wisbech - Area 3

Date:	31-Aug-17
By:	TF

OS Location	547700E	309600N
SAAR	566	mm
Site area =	50	ha
	0.5	4 km ²
Soil WRA Class	2	
Soil Type SPR Value	0.3	

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2 5	10	25 30	50 100	500
Growth Factor	0.85 (0.89 1.29	1.65	2.25 2.37	2.83 3.56	5.02
	34					
Q ₁ 50ha =	0.060 m ³ /s	=	60.41 l/s	=	1.208 l/s/ha	
Q ₂ 50ha =	0.063 m ³ /s	=	63.25 l/s	=	1.265 l/s/ha	
Q ₅ 50ha =	0.092 m ³ /s	=	91.67 l/s	=	1.833 l/s/ha	
Q ₁₀ 50ha =	0.117 m ³ /s	=	117.26 l/s	=	2.345 l/s/ha	
Q ₂₅ 50ha =	0.160 m³/s	=	159.90 l/s	=	3.198 l/s/ha	
Q ₃₀ 50ha =	0.168 m³/s	=	168.42 l/s	=	3.368 l/s/ha	
Q ₅₀ 50ha =	0.201 m ³ /s	=	201.11 l/s	=	4.022 l/s/ha	
Q ₁₀₀ 50ha =	0.253 m ³ /s	=	252.99 l/s	=	5.060 l/s/ha	
Q ₅₀₀ 50ha =	0.357 m ³ /s	=	356.75 l/s	=	7.135 l/s/ha	
<u>Factored for Development I</u> Site area =	<u>10.11</u> ha	1				
Q _{bar} site =	0.014 m ³ /s	=	14.37 l/s	=	1.42 l/s/ha	
Q ₁ site =	0.012 m ³ /s	=	12.21 l/s	=	1.21 l/s/ha	
Q ₂ site =	0.013 m ³ /s	=	12.79 l/s	=	1.26 l/s/ha	
Q₅site =	0.019 m ³ /s	=	18.54 l/s	=	1.83 l/s/ha	
Q ₁₀ site =	0.024 m ³ /s	=	23.71 l/s	=	2.35 l/s/ha	
Q ₂₅ site =	0.032 m ³ /s	=	32.33 l/s	=	3.20 l/s/ha	
Q ₃₀ site =	0.034 m ³ /s	=	34.06 l/s	=	3.37 l/s/ha	
Q ₅₀ site =	0.041 m ³ /s	=	40.67 l/s	=	4.02 l/s/ha	
Q ₁₀₀ site =	0.051 m ³ /s	=	51.15 l/s	=	5.06 l/s/ha	
Q ₅₀₀ site =	0.072 m ³ /s	=	72.13 l/s	=	7.13 l/s/ha	

East Wisbech - Area 4

Date:	31-Aug-17
By:	TF

OS Location	547700E	309600N
SAAR	566	mm
Site area =	50	ha
	0.5	4 km ²
Soil WRA Class	2	
Soil Type SPR Value	0.3	

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2 5	10	25 30	50 100	500
Growth Factor	0.85	0.89 1.29	1.65	2.25 2.37	2.83 3.56	5.02
Q ₁ 50ha =	0.060 m ³ /s	=	60.41 l/s	=	1.208 l/s/ha	
$Q_2 50ha =$	$0.063 \text{ m}^3/\text{s}$	=	63.25 l/s	=	1.265 l/s/ha	
Q ₅ 50ha =	0.003 m/s $0.092 \text{ m}^3/\text{s}$	=	91.67 l/s	=	1.833 l/s/ha	
$Q_{10} 50ha =$	0.052 m/s 0.117 m ³ /s	=	117.26 l/s	=	2.345 l/s/ha	
$Q_{10} = Q_{25} = 0$	$0.160 \text{ m}^3/\text{s}$	=	159.90 l/s	=	3.198 l/s/ha	
$Q_{25} = Q_{30} = Q$	$0.160 \text{ m}^{3}/\text{s}$		-			
	0.168 m/3 $0.201 \text{ m}^3/\text{s}$	=	168.42 l/s	=	3.368 l/s/ha	
Q ₅₀ 50ha =		=	201.11 l/s	=	4.022 l/s/ha	
Q ₁₀₀ 50ha =	0.253 m ³ /s	=	252.99 l/s	=	5.060 l/s/ha	
Q ₅₀₀ 50ha =	0.357 m ³ /s	=	356.75 l/s	=	7.135 l/s/ha	
Factored for Development Ir Site area =	npermeable Are 2.82 ha	2a				
Q _{bar} site =	0.004 m ³ /s	=	4.01 l/s	=	1.42 l/s/ha	
Q ₁ site =	0.003 m³/s	=	3.41 l/s	=	1.21 l/s/ha	
Q ₂ site =	0.004 m ³ /s	=	3.57 l/s	=	1.26 l/s/ha	
Q ₅ site =	0.005 m³/s	=	5.17 l/s	=	1.83 l/s/ha	
Q ₁₀ site =	0.007 m³/s	=	6.61 l/s	=	2.35 l/s/ha	
Q ₂₅ site =	0.009 m ³ /s	=	9.02 l/s	=	3.20 l/s/ha	
Q ₃₀ site =	0.009 m ³ /s	=	9.50 l/s	=	3.37 l/s/ha	
Q ₅₀ site =	0.011 m³/s	=	11.34 l/s	=	4.02 l/s/ha	
Q ₁₀₀ site =	0.014 m ³ /s	=	14.27 l/s	=	5.06 l/s/ha	

East Wisbech - Area 5

Date:	31-Aug-17
By:	TF

OS Location	547700E	309600N
SAAR	566	mm
Site area =	50	ha
	0.5	4 km ²
Soil WRA Class	2	
Soil Type SPR Value	0.3	

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2 5	10	25 30	50 100	500
Growth Factor	0.85 ().89 1.29	1.65	2.25 2.37	2.83 3.56	5.02
	34					
Q ₁ 50ha =	0.060 m ³ /s	=	60.41 l/s	=	1.208 l/s/ha	
Q ₂ 50ha =	0.063 m ³ /s	=	63.25 l/s	=	1.265 l/s/ha	
Q ₅ 50ha =	0.092 m ³ /s	=	91.67 l/s	=	1.833 l/s/ha	
Q ₁₀ 50ha =	0.117 m ³ /s	=	117.26 l/s	=	2.345 l/s/ha	
Q ₂₅ 50ha =	0.160 m³/s	=	159.90 l/s	=	3.198 l/s/ha	
Q ₃₀ 50ha =	0.168 m³/s	=	168.42 l/s	=	3.368 l/s/ha	
Q ₅₀ 50ha =	0.201 m ³ /s	=	201.11 l/s	=	4.022 l/s/ha	
Q ₁₀₀ 50ha =	0.253 m ³ /s	=	252.99 l/s	=	5.060 l/s/ha	
Q ₅₀₀ 50ha =	0.357 m ³ /s	=	356.75 l/s	=	7.135 l/s/ha	
Site area =	<mark>5.56</mark> ha					
Q _{bar} site =	0.008 m³/s	=	7.90 l/s	=	1.42 l/s/ha	
Q ₁ site =	0.007 m ³ /s	=	6.72 l/s	=	1.21 l/s/ha	
Q ₂ site =	0.007 m ³ /s	=	7.03 l/s	=	1.26 l/s/ha	
Q₅site =	0.010 m ³ /s	=	10.19 l/s	=	1.83 l/s/ha	
Q ₁₀ site =	0.013 m³/s	=	13.04 l/s	=	2.35 l/s/ha	
Q ₂₅ site =	0.018 m ³ /s	=	17.78 l/s	=	3.20 l/s/ha	
Q ₃₀ site =	0.019 m ³ /s	=	18.73 l/s	=	3.37 l/s/ha	
Q ₅₀ site =	0.022 m ³ /s	=	22.36 l/s	=	4.02 l/s/ha	
Q ₁₀₀ site =	0.028 m ³ /s	=	28.13 l/s	=	5.06 l/s/ha	
Q ₅₀₀ site =	0.040 m ³ /s	=	39.67 l/s	=	7.13 l/s/ha	

East Wisbech - Area 6

Date:	31-Aug-17
By:	TF

OS Location	547700E	309600N
SAAR	566	mm
Site area =	50	ha
	0.5	4 km ²
Soil WRA Class	2	
Soil Type SPR Value	0.3	

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2 5	10	25 30	50 100	500
Growth Factor	0.85	0.89 1.29	1.65	2.25 2.37	2.83 3.56	5.02
Q ₁ 50ha =	0.060 m ³ /s	=	60.41 l/s	=	1.208 l/s/ha	
$Q_2 50ha =$	0.063 m ³ /s	=	63.25 l/s	=	1.265 l/s/ha	
Q ₅ 50ha =	0.092 m ³ /s	=	91.67 l/s	=	1.833 l/s/ha	
Q ₁₀ 50ha =	0.117 m ³ /s	=	117.26 l/s	=	2.345 l/s/ha	
$Q_{10} = Q_{25} = 0$	0.117 m/s $0.160 \text{ m}^3/\text{s}$	=	117.20 l/s	=	3.198 l/s/ha	
$Q_{25} = Q_{30} = Q$	0.160 m ³ /s					
	$0.168 \text{ m}^{3}/\text{s}$ $0.201 \text{ m}^{3}/\text{s}$	=	168.42 l/s	=	3.368 l/s/ha	
Q ₅₀ 50ha =		=	201.11 l/s	=	4.022 l/s/ha	
Q ₁₀₀ 50ha =	0.253 m ³ /s	=	252.99 l/s	=	5.060 l/s/ha	
Q ₅₀₀ 50ha =	0.357 m ³ /s	=	356.75 l/s	=	7.135 l/s/ha	
Factored for Development Ir Site area =		<u>ea</u>				
Site area =	<mark>9.61</mark> ha					
Q _{bar} site =	0.014 m ³ /s	=	13.66 l/s	=	1.42 l/s/ha	
Q ₁ site =	0.012 m³/s	=	11.61 l/s	=	1.21 l/s/ha	
Q ₂ site =	0.012 m³/s	=	12.16 l/s	=	1.26 l/s/ha	
Q ₅ site =	0.018 m³/s	=	17.62 l/s	=	1.83 l/s/ha	
Q ₁₀ site =	0.023 m³/s	=	22.54 l/s	=	2.35 l/s/ha	
Q ₂₅ site =	0.031 m ³ /s	=	30.73 l/s	=	3.20 l/s/ha	
Q ₃₀ site =	0.032 m ³ /s	=	32.37 l/s	=	3.37 l/s/ha	
Q ₅₀ site =	0.039 m³/s	=	38.65 l/s	=	4.02 l/s/ha	
Q ₁₀₀ site =	0.049 m ³ /s	=	48.62 l/s	=	5.06 l/s/ha	

East Wisbech - Area 7

Date:	31-Aug-17
By:	TF

OS Location	547700E	309600N
SAAR	566	mm
Site area =	50	ha
	0.5	4 km ²
Soil WRA Class	2	
Soil Type SPR Value	0.3	

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2	5 10	25	30	50	100	500
Growth Factor	0.85	0.89 1	.29 1.65	2.25	2.37	2.83	3.56	5.02
Q ₁ 50ha =	0.060 m ³ /s	=	60.41	1/s	=	1.208 l/s/ha		
$Q_2 50ha =$	0.063 m ³ /s				=	1.265 l/s/ha		
$Q_2 50ha = Q_5 50ha =$	0.092 m ³ /s							
5				-	=	1.833 l/s/ha		
Q ₁₀ 50ha =	0.117 m ³ /s		-	-	=	2.345 l/s/ha		
Q ₂₅ 50ha =	0.160 m ³ /s		159.90	l/s	=	3.198 l/s/ha		
Q ₃₀ 50ha =	0.168 m ³ /s		168.42	l/s	=	3.368 l/s/ha		
Q ₅₀ 50ha =	0.201 m ³ /s		201.11	l/s	=	4.022 l/s/ha		
Q ₁₀₀ 50ha =	0.253 m ³ /s	=	252.99	l/s	=	5.060 l/s/ha		
Q ₅₀₀ 50ha =	0.357 m³/s	=	356.75	l/s	=	7.135 l/s/ha		
Factored for Development In Site area =	npermeable Ar 3.1 ha	<u>ea</u>						
Q _{bar} site =	0.004 m ³ /s	=	4.41	l/s	=	1.42 l/s/ha		
Q ₁ site =	0.004 m³/s	=	3.75	l/s	=	1.21 l/s/ha		
Q ₂ site =	0.004 m ³ /s	=	3.92	l/s	=	1.26 l/s/ha		
Q ₅ site =	0.006 m ³ /s	=	5.68	l/s	=	1.83 l/s/ha		
Q ₁₀ site =	0.007 m ³ /s	=	7.27	l/s	=	2.35 l/s/ha		
Q ₂₅ site =	0.010 m ³ /s	=	9.91	l/s	=	3.20 l/s/ha		
Q ₃₀ site =	0.010 m ³ /s	=	10.44	l/s	=	3.37 l/s/ha		
Q ₅₀ site =	0.012 m ³ /s	=	12.47	l/s	=	4.02 l/s/ha		
Q ₁₀₀ site =	0.016 m ³ /s	=	15.69	l/s	=	5.06 l/s/ha		
Q ₅₀₀ site =	0.022 m ³ /s	=	22.12	l/s	=	7.13 l/s/ha		

East Wisbech - Area 8

Date:	31-Aug-17
By:	TF

OS Location	547700E	309600N
SAAR	566	mm
Site area =	50	ha
	0.5	4 km ²
Soil WRA Class	2	
Soil Type SPR Value	0.3	

 $Qbar_{rural} = 0.00108 \text{ x (AREA)}^{0.89} \text{ X (SAAR)}^{1.17} \text{ X (SOIL)}^{2.17}$

Qbar-50ha = $0.071 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2 5	10	25 30	50 100	500
Growth Factor	0.85 0.	89 1.29	1.65	2.25 2.37	2.83 3.56	5.02
	3,					
Q ₁ 50ha =	0.060 m ³ /s	=	60.41 l/s	=	1.208 l/s/ha	
Q ₂ 50ha =	0.063 m ³ /s	=	63.25 l/s	=	1.265 l/s/ha	
Q ₅ 50ha =	0.092 m ³ /s	=	91.67 l/s	=	1.833 l/s/ha	
Q ₁₀ 50ha =	0.117 m ³ /s	=	117.26 l/s	=	2.345 l/s/ha	
Q ₂₅ 50ha =	0.160 m³/s	=	159.90 l/s	=	3.198 l/s/ha	
Q ₃₀ 50ha =	0.168 m³/s	=	168.42 l/s	=	3.368 l/s/ha	
Q ₅₀ 50ha =	0.201 m ³ /s	=	201.11 l/s	=	4.022 l/s/ha	
Q ₁₀₀ 50ha =	0.253 m ³ /s	=	252.99 l/s	=	5.060 l/s/ha	
Q ₅₀₀ 50ha =	0.357 m ³ /s	=	356.75 l/s	=	7.135 l/s/ha	
Factored for Development In Site area =	1.25 ha					
Q _{bar} site =	0.002 m ³ /s	=	1.78 l/s	=	1.42 l/s/ha	
Q ₁ site =	0.002 m ³ /s	=	1.51 l/s	=	1.21 l/s/ha	
Q ₂ site =	0.002 m ³ /s	=	1.58 l/s	=	1.26 l/s/ha	
Q ₅ site =	0.002 m ³ /s	=	2.29 l/s	=	1.83 l/s/ha	
Q ₁₀ site =	0.003 m³/s	=	2.93 l/s	=	2.35 l/s/ha	
Q ₂₅ site =	0.004 m ³ /s	=	4.00 l/s	=	3.20 l/s/ha	
Q ₃₀ site =	0.004 m ³ /s	=	4.21 l/s	=	3.37 l/s/ha	
Q ₅₀ site =	0.005 m³/s	=	5.03 l/s	=	4.02 l/s/ha	
Q ₁₀₀ site =	0.006 m ³ /s	=	6.32 l/s	=	5.06 l/s/ha	
Q ₅₀₀ site =	0.009 m ³ /s	=	8.92 l/s	=	7.13 l/s/ha	

APPENDIX C

Create Consulting Engineers Ltd					
15 Princes Street	Wisb	ech			
Norwich	Area	1 Atte	enuat	ion Ba	sin
Norfolk NR3 1AF	1.10	0 + CC			
Date 02/11/2017		gned by	, mr		
File AREA 1.SRCX		ked by			
XP Solutions	Sour	ce Cont	rol 2	2017.1	.2
Summary of Results	for 10)0 vear	Retu	rn Pei	ciod (+409
<u></u>	101 1	<u>, , , , , , , , , , , , , , , , , , , </u>	1.000		100 (10
Storm	Max		Max	Max	Status
Event	Level	Depth Co	ntrol	Volume	
	(m)	(m) (1/s)	(m³)	
15 min Summer	1.783	0.283	4.3	870.9	ОК
30 min Summer	1.869	0.369	4.3	1135.3	O K
60 min Summer	1.957	0.457	4.3	1408.8	O K
120 min Summer			4.3	1687.8	0 K
180 min Summer				1850.3	
240 min Summer				1962.9	
360 min Summer				2112.2	
480 min Summer				2222.0	
600 min Summer 720 min Summer				2305.3	
960 min Summer				2371.5	0 K 0 K
1440 min Summer				2591.9	
2160 min Summer				2677.5	
2880 min Summer				2705.2	
4320 min Summer	2.369	0.869	4.3	2676.2	ОК
5760 min Summer	2.344	0.844	4.3	2600.8	O K
					0 77
7200 min Summer	2.321	0.821	4.3	2528.1	ΟK
8640 min Summer	2.298	0.798	4.3	2456.7	O K
	2.298	0.798	4.3		O K
8640 min Summer	2.298	0.798	4.3	2456.7	O K
8640 min Summer	2.298	0.798 0.775	4.3 4.3	2456.7 2387.0	O K
8640 min Summer 10080 min Summer	2.298 2.275	0.798 0.775 Flooded	4.3 4.3	2456.7 2387.0	0 K 0 K
8640 min Summer 10080 min Summer Storm	2.298 2.275 Rain	0.798 0.775 Flooded	4.3 4.3 Disch	2456.7 2387.0	0 K 0 K ime-Peak
8640 min Summer 10080 min Summer Storm Event	2.298 2.275 Rain (mm/hr)	0.798 0.775 Flooded Volume (m ³)	4.3 4.3 Disch Volu	2456.7 2387.0	0 K 0 K ime-Peak
8640 min Summer 10080 min Summer Storm	2.298 2.275 Rain (mm/hr)	0.798 0.775 Flooded Volume	4.3 4.3 Disch Vol (m	2456.7 2387.0 harge T. ume ³)	OK OK ime-Peak (mins)
8640 min Summer 10080 min Summer Storm Event 15 min Summer	2.298 2.275 Rain (mm/hr) 132.402	0.798 0.775 Flooded Volume (m ³) 0.0	4.3 4.3 Disch vol (m	2456.7 2387.0 harge T ume 3) 362.7	0 K 0 K ime-Peak (mins)
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432	0.798 0.775 Flooded Volume (m ³) 0.0 0.0	4.3 4.3 Disch Volu (m 3 3 7	2456.7 2387.0 harge T ume ³) 362.7 367.5	O K O K (mins) 19 34
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0	4.3 4.3 Disch Volu (m 3 3 7 7	2456.7 2387.0 harge T. ume ³) 362.7 367.5 730.9	O K O K (mins) 19 34 64
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.3 4.3 Disch Vol- (m 3 3 7 7 6 6	2456.7 2387.0 harge T. ume 3) 862.7 867.5 730.9 711.8 589.0 565.0	O K O K ime-Peak (mins) 19 34 64 124 184 244
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.3 4.3 Disch Volv (m 3 3 7 7 6 6 6 6	2456.7 2387.0 harge T. ume 3) 362.7 367.5 730.9 711.8 589.0 565.0 531.5	O K O K (mins) 19 34 64 124 184 244 364
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.3 4.3 Disch Volv (m 3 3 7 7 6 6 6 6 6	2456.7 2387.0 harge T. ume 3) 362.7 367.5 730.9 711.8 589.0 565.0 531.5 513.6	O K O K (mins) 19 34 64 124 184 244 364 484
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 600 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.3 4.3 Disch Volv (m 3 3 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2456.7 2387.0 harge T ume 3) 362.7 367.5 730.9 711.8 589.0 565.0 531.5 513.6 505.1	O K O K (mins) 19 34 64 124 184 244 364 484 604
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 30 min Summer 120 min Summer 180 min Summer 180 min Summer 360 min Summer 480 min Summer 720 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.3 4.3 Disch Volv (m 3 3 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2456.7 2387.0 harge T ume 3) 362.7 367.5 730.9 711.8 589.0 565.0 531.5 513.6 505.1 502.5	O K O K (mins) 19 34 64 124 184 244 364 484 604 724
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 30 min Summer 120 min Summer 120 min Summer 180 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.3 4.3 Disch Volv (m 3 3 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2456.7 2387.0 harge T. ume 3) 362.7 367.5 730.9 711.8 589.0 565.0 531.5 513.6 505.1 502.5 505.7	O K O K (mins) 19 34 64 124 184 244 364 484 604 724 962
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 180 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.3 4.3 Disch Volv (m 3 3 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2456.7 2387.0 harge T. ume 3) 362.7 367.5 730.9 711.8 589.0 565.0 531.5 513.6 505.1 502.5 505.7 503.6	O K O K ime-Peak (mins) 19 34 64 124 184 244 364 484 604 724 962 1442
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.3 4.3 Disch Volv (m 3 3 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2456.7 2387.0 harge T. ume 3) 362.7 367.5 730.9 711.8 589.0 565.0 531.5 513.6 505.1 502.5 505.7 503.6 222.1	O K O K ime-Peak (mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 30 min Summer 120 min Summer 120 min Summer 180 min Summer 180 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer 240 min Summer 2880 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.3 4.3 Disch Volv (m 3 3 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2456.7 2387.0 harge T ume 3) 362.7 367.5 730.9 711.8 589.0 565.0 531.5 513.6 505.1 502.5 505.7 503.6 222.1 213.7	O K O K ime-Peak (mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.3 4.3 Disch Volv (m 3 3 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2456.7 2387.0 harge T ume 3) 362.7 367.5 730.9 711.8 589.0 565.0 531.5 513.6 505.1 502.5 505.7 503.6 222.1 213.7 173.6	O K O K ime-Peak (mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.3 4.3 Disch Volv (m 3 3 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2456.7 2387.0 harge T ume 3) 362.7 367.5 730.9 711.8 589.0 565.0 531.5 513.6 505.1 502.5 505.7 503.6 222.1 213.7	O K O K ime-Peak (mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320
8640 min Summer 10080 min Summer Storm Event 15 min Summer 30 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 180 min Summer 240 min Summer 360 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer 2880 min Summer 320 min Summer	2.298 2.275 Rain (mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459	0.798 0.775 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.3 4.3 Disch Volv (m 3 3 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2456.7 2387.0 harge T ume 3) 362.7 367.5 730.9 711.8 589.0 565.0 531.5 513.6 505.1 502.5 505.7 503.6 222.1 213.7 173.6 438.4	O K O K ime-Peak (mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5136

Create Consulting Er	ngineers Ltd						Page 2
15 Princes Street		Wisb	ech				
Norwich			1 Atte	+ בווחב	ion Ra	sin	
Norfolk NR3 1AF					- UII DA	~ - 11	
			00 + CC				— Micro
Date 02/11/2017			gned by	-			Draina
File AREA 1.SRCX		Chec	ked by	BWA			Didilio
XP Solutions		Sour	ce Cont	crol 2	2017.1	.2	
Summary	y of Results Storm Event	Max		Max	Max	riod (+40%) Status	<u>)</u>
	Evenc	(m)		1/s)	(m ³)		
	15 min Winter				975.7	ОК	
	30 min Winter				1272.0	ОК ОК	
	60 min Winter 120 min Winter				1578.8 1892.7		
	120 min Winter 180 min Winter				2076.3		
	240 min Winter				2076.3	0 K 0 K	
	360 min Winter				2203.1	0 K	
	480 min Winter				2495.6	0 K	
	600 min Winter				2495.6	0 K	
	720 min Winter				2666.5	0 K	
	960 min Winter				2781.3		
1	.440 min Winter				2925.2	0 K	
	160 min Winter				3034.2	0 K	
	880 min Winter				3078.4		
4	320 min Winter	2.498	0.998		3073.5	ОК	
5	760 min Winter	2.476	0.976	4.3	3006.6	ОК	
7	200 min Winter	2.445	0.945	4.3	2911.5	ОК	
8	640 min Winter	2.416	0.916	4.3	2819.8	ОК	
10	080 min Winter	2.388	0.888	4.3	2734.6	0 K	
	Storm	Rain	Flooded	Disch	narge T	ime-Peak	
	Storm Event		Flooded Volume	Disch Vol	-	ime-Peak (mins)	
					ume		
	Event	(mm/hr)	Volume (m³)	Vol (m	ume ³)		
		(mm/hr)	Volume (m³) 0.0	Vol (m	ume	(mins)	
	Event 15 min Winter	(mm/hr)	Volume (m ³) 0.0 0.0	Vol (m	ume 1 ³) 367.1	(mins) 19	
1	Event 15 min Winter 30 min Winter	(mm/hr) 132.402 86.432	Volume (m ³) 0.0 0.0 0.0	Vol : (m	ume 1 ³) 367.1 366.3	(mins) 19 34	
	Event 15 min Winter 30 min Winter 60 min Winter	(mm/hr) 132.402 86.432 53.779	Volume (m ³) 0.0 0.0 0.0 0.0	Vol (m 3 7 6	ume 1 ³) 367.1 366.3 724.7	(mins) 19 34 64	
1	Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter	(mm/hr) 132.402 86.432 53.779 32.379	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Vol (m 3 7 6 6	ume 367.1 366.3 724.7 587.4	(mins) 19 34 64 124	
1	Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 3 3 7 6 6 6 6	ume 3) 367.1 366.3 724.7 687.4 649.7	(mins) 19 34 64 124 182	
1 2 3	Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min Winter 40 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 3 3 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ume 3) 367.1 366.3 724.7 587.4 549.7 530.3	(mins) 19 34 64 124 182 242	
1 2 3 4	Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min Winter 40 min Winter 60 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m 3 3 3 3 3 3 3 3 3 3 3 4 6 6 6 6 6 6 6 6	ume 3 3 3 3 3 3 6 7 2 4 7 5 8 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 5 8 7 4 5 6 3 5 6 3 7 2 4 7 5 8 7 4 5 5 7 2 4 7 5 8 7 4 5 5 7 2 4 7 5 8 7 4 5 5 7 4 5 5 7 4 5 5 7 4 5 5 7 4 5 5 7 4 5	(mins) 19 34 64 124 182 242 360	
1 2 3 4 6	Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min Winter 40 min Winter 60 min Winter 80 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m 3 3 5 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ume 3) 367.1 366.3 724.7 587.4 549.7 530.3 517.7 521.9 529.7 534.7	(mins) 19 34 64 124 182 242 360 480	
1 2 3 4 6 7 9	Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min Winter 40 min Winter 80 min Winter 80 min Winter 20 min Winter 20 min Winter 20 min Winter 20 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m 3 3 5 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ume 3 3 3 3 3 3 6 7 2 4 7 5 8 7 4 5 7 4 5 7 4 5 7 4 5 7 4 5 7 5 8 7 4 5 6 3 5 6 3 7 2 4 7 5 8 7 4 5 5 7 2 4 7 5 8 7 4 5 5 7 2 4 7 5 8 7 4 5 5 7 4 5 5 7 4 5 5 7 4 5 5 7 4 5 5 7 4 5	(mins) 19 34 64 124 182 242 360 480 598 716 952	
1 2 3 4 6 7 9 14	Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min Winter 80 min Winter 80 min Winter 80 min Winter 20 min Winter 20 min Winter 40 min Winter 40 min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m	ume 3) 367.1 366.3 724.7 587.4 549.7 530.3 517.7 521.9 529.7 534.7	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426	
1 2 3 4 6 7 9 14 21	Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min Winter 80 min Winter 80 min Winter 80 min Winter 20 min Winter 20 min Winter 40 min Winter 60 min Winter 40 min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol. (m 3 3 3 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ume 3) 367.1 366.3 724.7 587.4 549.7 530.3 517.7 521.9 529.7 534.7 539.4 536.3 290.1	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120	
1 2 3 4 6 7 9 14 21 28	Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min Winter 80 min Winter 80 min Winter 80 min Winter 20 min Winter 80 min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol. (m 3 3 3 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ume 3) 367.1 366.3 724.7 587.4 549.7 530.3 517.7 521.9 529.7 534.7 539.4 536.3 290.1 283.4	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820	
1 2 3 4 6 7 9 14 21 28 43	Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol. (m 33 37 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ume 3) 367.1 366.3 724.7 587.4 549.7 530.3 517.7 521.9 529.7 534.7 539.4 536.3 290.1 283.4 239.1	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152	
1 2 3 4 6 7 9 14 21 28 43 57	Event Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min Winter 80 min Winter 80 min Winter 80 min Winter 90 min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol. (m) 33 37 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ume 3) 367.1 366.3 724.7 587.4 549.7 530.3 517.7 521.9 529.7 534.7 539.4 539.4 536.3 290.1 283.4 239.1 497.2	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472	
1 2 3 4 6 7 9 14 21 28 43 57 72	Event Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min Winter 80 min Winter 80 min Winter 80 min Winter 90 min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol. (m) 33 37 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ume 3) 367.1 366.3 724.7 587.4 549.7 530.3 517.7 521.9 529.7 534.7 539.4 536.3 290.1 283.4 239.1 497.2 436.5	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472 6632	
1 2 3 4 6 7 9 14 21 28 43 57 72 86	Event Event 15 min Winter 30 min Winter 60 min Winter 20 min Winter 80 min	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol. (m 3 3 3 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ume 3) 367.1 366.3 724.7 587.4 549.7 530.3 517.7 521.9 529.7 534.7 539.4 539.4 536.3 290.1 283.4 239.1 497.2	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472	

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 1 Attenuation Basin	4
Norfolk NR3 1AF	1:100 + CC	Micco
Date 02/11/2017	Designed by TF	
File AREA 1.SRCX	Checked by BWA	Diamaye
XP Solutions	Source Control 2017.1.2	

Rainfall Model	FSR	Winter Storms Yes	s
Return Period (years)	100	Cv (Summer) 0.750	C
Region	England and Wales	Cv (Winter) 0.840	D
M5-60 (mm)	19.000	Shortest Storm (mins) 15	5
Ratio R	0.416	Longest Storm (mins) 10080	D
Summer Storms	Yes	Climate Change % +40	C

<u>Time Area Diagram</u>

Total Area (ha) 3.520

Time	(mins)	Area
From:	To:	(ha)

0 4 3.520

Create Consu	ulting En	gineers	s Lt	d							Page 4
15 Princes S	Street			I	Wisbe	ch					
Jorwich	h Area 1 Attenuation Basin								L.		
Norfolk NR3	cfolk NR3 1AF 1:100 + CC								Micco		
Date 02/11/2	te 02/11/2017 Designed by TF										
File AREA 1	.SRCX			(Checke	ed by BWA					Drainac
XP Solutions	S			:	Source	e Control	203	17.1.2			
						<u>Details</u>					
		Stora				over Level		2.500			
			<u>'l'a</u>			<u>d Structu</u>					
						el (m) 1.50					
						Depth (m)					
		l	0.000	0 .	3080.0	1.000		3080.0			
		<u>Hydro</u>	-Bra	ake®	Optim	um Outflo	ow C	ontrol	<u>.</u>		
			F		Refere Head	nce MD-SHE	-009	8-4300-3	1000-43 1.0		
				-	'low (l					.3	
			200	-	lush-F			Ca	alculat		
					Object	ive Minim	ise	upstream	m stora	ge	
				-	plicat				Surfa		
				-	Availa eter (es 98	
			Tr		leter (Level	,			1.5		
	Minimum	Outlet				. ,				50	
		sted Man	-						12		
Control	Points	Head	(m)	Flow	(l/s)	Cont	rol	Points	H	ead (m)) Flow (1/
Design Point	(Calculate Flush-Fl				4.3 4.3	Mean Flow	ovei		-Flo® Range		
The hydrolog Hydro-Brake											
Hydro-Brake											
Depth (m)	Flow (1/s) Depth	(m)	Flow	(1/s)	Depth (m)	Flo	w (l/s)	Depth	(m) Fl	ow (1/s)
0.100			.200		4.7	3.000		7.2	1	000	10.7
0.200			.400		5.0	3.500		7.7	1	500	11.1
0.300			.600		5.3	4.000		8.2	1	000	11.4
0.400			.800		5.6	4.500		8.7		500	11.8
0.500			200		5.9	5.000		9.1		000	12.1
0.600 0.800			.200		6.2 6.5	5.500		9.6 10.0	9.	500	12.4
1.000			.400		6.5 6.7			10.0			
		I				I			I		
						XP Soluti					

Create Consulting End	gineers Lt	d					Page 1
15 Princes Street			bech				
Norwich		Ares	a 10 At	tenuat	ion 1	Basin	14
Norfolk NR3 1AF			10 + CC			-40 - 11	
							- Micro
Date 12/09/2017			igned k	-			Drainac
File AREA 10.SRCX		Cheo	cked by	y BWA			Diamag
XP Solutions		Soui	rce Cor	ntrol 2	2017.3	1.2	
Summary o	of Results	for 1	<u>00 yea:</u>	r Retu	rn Pe	riod (+40%)	
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth C		Volume	2	
		(m)	(m)	(1/s)	(m³)		
1 '	5 min Summer	1 772	0 272	4 1	843.8	ОК	
) min Summer				1100.0		
) min Summer				1365.0		
120) min Summer	2.028	0.528	4.1	1635.4	O K	
180) min Summer	2.078	0.578	4.1	1793.0		
) min Summer				1902.1		
360) min Summer) min Summer	2.160	0.660	4.1	2047.4		
480) min Summer) min Summer	∠.⊥95 2 221	0.095 0.721	4.⊥ ⊿ 1	2154.5 2235.9		
) min Summer) min Summer				2235.9		
) min Summer				2398.0		
1440) min Summer	2.312	0.812	4.1	2518.2	ОК	
2160) min Summer	2.340	0.840	4.1	2604.9	ОК	
) min Summer				2635.5		
4320) min Summer	2.343	0.843	4.1	2614.2		
) min Summer) min Summer				2543.8 2474.2		
) min Summer				24/4.2 2405.8		
10080) min Summer	2.255	0.755	4.1	2339.0		
15	5 min Winter	1.805	0.305	4.1	945.2	ОК	
30) min Winter	1.898	0.398	4.1	1232.4	O K	
	Storm	Rain			arge I	'ime-Peak	
	Event	(mm/hr)	Volume			(mins)	
			(m³)	(m ³	·)		
15	min Summer	132.402	0.	0 3	44.8	19	
30	min Summer	86.432	0.	0 3	49.9	34	
		53.779			96.4	64	
	min Summer	32.379			79.7	124	
	min Summer min Summer	23.772 18.994			60.0 39.7	184 244	
		18.994			39.7 05.0	244 364	
	min Summer	10.928			84.7	484	
	min Summer	9.143			73.7	604	
720	min Summer	7.900	0.	0 5	68.8	724	
	min Summer	6.269			69.5	962	
	min Summer	4.519			67.6	1442	
	min Summer	3.253			52.5 43 1	2160	
	min Summer min Summer	2.574 1.848			43.1 06.2	2880 4320	
	min Summer	1.848			06.2	4320 5248	
	min Summer	1.215			18.4	5976	
7200		v			32.6	6664	
	min Summer	1.045	υ.				
8640		1.045 0.920			52.6	7464	
8640 10080 15	min Summer min Summer min Winter	0.920 132.402	0. 0.	0 20 0 3	52.6 49.1	19	
8640 10080 15	min Summer min Summer	0.920	0. 0.	0 20 0 3	52.6		

		d			
5 Princes Stree	t	Wisk	bech		
orwich		Area	a 10 Att	cenuation	n Basin
orfolk NR3 1AF	1	1:10)0 + CC		
ate 12/09/2017		Des	igned by	/ GS	
ile AREA 10.SRC	Х		cked by		
P Solutions				rol 201	7.1.2
Summ	<u>ary of Results</u>	for 1	<u>00 year</u>	Return	Period (+
	Storm	Max		Max Ma	
	Event		-	ntrol Volu	
		(m)	(m) (1	1/s) (m ³	-)
	60 min Winter	1.993	0.493	4.1 1529	9.7 ок
	120 min Winter	2.092	0.592	4.1 1833	3.8 ОК
	180 min Winter			4.1 2011	
	240 min Winter				
	360 min Winter 480 min Winter			4.1 2298	
	480 min Winter 600 min Winter			4.1 2419 4.1 2512	
	720 min Winter			4.1 2512	
	960 min Winter			4.1 2699	
	1440 min Winter			4.1 2841	
	2160 min Winter				
	2880 min Winter			4.1 2997	7.0 ок
	4320 min Winter	2.467	0.967	4.1 2998	8.8 ОК
	5760 min Winter			4.1 2939	9.8 ОК
	7200 min Winter			4.1 2852	
	8640 min Winter			4.1 2761	
	10080 min Winter	2.365	0.865	4.1 2680	0.6 ОК
	Storm	Pain	Floodod	Discharge	Timo-Dook
	Storm Event	Rain (mm/hr)		-	
	Storm Event		Flooded Volume (m³)	-	e Time-Peak (mins)
	Event	(mm/hr)	Volume (m³)	Volume (m ³)	
	Event 60 min Winter	(mm/hr)	Volume (m ³) 0.0	Volume (m ³) 691.2	(mins)
	Event 60 min Winter 120 min Winter	(mm/hr) 53.779 32.379	Volume (m ³) 0.0 0.0	Volume (m ³) 691.2 659.4	(mins) 2 64 4 124
	Event 60 min Winter 120 min Winter 180 min Winter	(mm/hr) 53.779 32.379 23.772	Volume (m ³) 0.0 0.0 0.0	Volume (m ³) 691.2 659.4 623.6	(mins) 2 64 4 124 5 182
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter	(mm/hr) 53.779 32.379 23.772 18.994	Volume (m ³) 0.0 0.0 0.0 0.0	Volume (m ³) 691.2 659.4 623.6 601.9	(mins) 2 64 4 124 5 182 9 242
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	(mm/hr) 53.779 32.379 23.772 18.994 13.738	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 691.2 659.4 623.6 601.9 585.0	(mins) 2 64 4 124 5 182 9 242 0 360
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter	(mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 691.2 659.4 623.6 601.5 585.0 584.5	(mins) 2 64 4 124 5 182 9 242 0 360 9 480
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	(mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 691.2 659.4 623.6 601.9 585.0 584.9 591.8	(mins) 2 64 4 124 5 182 9 242 0 360 9 480 8 598
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	(mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 691.2 659.4 623.6 601.5 585.0 584.5 591.8 596.5	(mins) 2 64 4 124 5 182 9 242 9 360 9 480 8 598 5 716
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter 1440 min Winter	(mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 691.2 659.4 623.6 601.5 585.0 584.5 591.8 596.5 601.1	(mins) 2 64 4 124 5 182 9 242 9 360 9 480 8 598 5 716 1 952
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter 1440 min Winter	(mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 691.2 659.4 623.6 601.9 585.0 584.9 591.8 596.5 601.1 598.4 1214.6	(mins) 2 64 4 124 5 182 9 242 9 360 9 480 8 598 5 716 1 952 4 1426 5 2120
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter 1440 min Winter 2160 min Winter	(mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 691.2 659.4 623.6 601.9 585.0 584.9 591.8 596.5 601.1 598.4 1214.6 1208.6	(mins) 2 64 4 124 5 182 9 242 9 360 9 480 8 598 5 716 1 952 4 1426 5 2120 5 2820
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter	<pre>(mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 691.2 659.4 623.6 601.9 585.0 584.9 591.8 596.5 601.1 598.4 1214.6 1208.6 1167.8	(mins) 2 64 4 124 5 182 9 242 9 360 9 480 9 480 9 598 5 716 9 952 4 1426 5 2120 5 2820 8 4152
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2480 min Winter 2480 min Winter 5760 min Winter	<pre>(mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 691.2 659.4 623.6 601.9 585.0 584.9 591.8 596.5 601.1 598.4 1214.6 1208.6 1167.8 2358.5	(mins) 2 64 4 124 5 182 9 242 9 360 9 480 9 480 9 598 5 716 9 52 4 1426 5 2120 5 2820 8 4152 5 5472
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 1440 min Winter 2480 min Winter 2480 min Winter 25760 min Winter 7200 min Winter	<pre>(mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 691.2 659.4 623.6 601.9 585.0 584.9 591.8 596.5 601.1 598.4 1214.6 1208.6 1167.8 2358.5 2302.2	(mins) 2 64 4 124 5 182 9 242 9 360 9 480 8 598 5 716 1 952 4 1426 5 2120 5 2820 8 4152 5 5472 2 6696
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2480 min Winter 2880 min Winter 5760 min Winter	(mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 691.2 659.4 623.6 601.9 585.0 584.9 591.8 596.5 601.1 598.4 1214.6 1208.6 1167.8 2358.5 2302.2 2253.2	(mins) 2 64 4 124 5 182 9 242 9 360 9 480 8 598 5 716 1 952 4 1426 5 2120 5 2820 8 4152 5 5472 2 6696

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 10 Attenuation Basin	<u> </u>
Norfolk NR3 1AF	1:100 + CC	Micco
Date 12/09/2017	Designed by GS	Nainare
File AREA 10.SRCX	Checked by BWA	Diamaye
XP Solutions	Source Control 2017.1.2	·

FSR	Winter Storms Yes
100	Cv (Summer) 0.750
England and Wales	Cv (Winter) 0.840
19.000	Shortest Storm (mins) 15
0.416	Longest Storm (mins) 10080
Yes	Climate Change % +40
	100 England and Wales 19.000 0.416

<u>Time Area Diagram</u>

Total Area (ha) 3.410

Time (mins) Area From: To: (ha)

0 4 3.410

Create Consulting Engineers Ltd		Page 4						
15 Princes Street	Wisbech							
Norwich	Area 10 Attenuation Basin	4						
Norfolk NR3 1AF	1:100 + CC	Micco						
Date 12/09/2017	Designed by GS							
File AREA 10.SRCX	Checked by BWA	Diamage						
XP Solutions								
1	<u>Model Details</u>							
Storage is O	nline Cover Level (m) 2.500							
Tank	<u>or Pond Structure</u>							
Inve	rt Level (m) 1.500							
Depth (m) Are	ea (m²) Depth (m) Area (m²)							
0.000	3100.0 1.000 3100.0							
Hydro-Brake®	Optimum Outflow Control							
Unit	Reference MD-SHE-0096-4100-1000-4100							
Desig	n Head (m) 1.000							
5	Flow (1/s) 4.1							
	Flush-Flo™ Calculated Objective Minimise upstream storage							
A	pplication Surface							
1	Available Yes							
	meter (mm) 96 Level (m) 1.500							
Minimum Outlet Pipe Dia								
Suggested Manhole Dia								
Control Po	ints Head (m) Flow (l/s)							
	alculated) 1.000 4.1							
E	Flush-Flo™ 0.294 4.1							
Mean Flow over H	Kick-Flo® 0.629 3.3 Head Range - 3.6							
Hydro-Brake® Optimum as specified.	een based on the Head/Discharge relat Should another type of control device n these storage routing calculations w	other than a						
Depth (m) Flow (1/s) Depth (m) Flow	v (l/s) Depth (m) Flow (l/s) Depth (m)	Flow (l/s)						
0.100 3.1 1.200	4.5 3.000 6.8 7.000	10.2						
0.200 4.0 1.400	4.8 3.500 7.4 7.500							
0.300 4.1 1.600 0.400 4.0 1.800	5.1 4.000 7.8 8.000 5.4 4.500 8.3 8.500							
0.400 4.0 1.800	5.7 5.000 8.7 9.000							
0.600 3.5 2.200	5.9 5.500 9.1 9.500							
0.800 3.7 2.400	6.2 6.000 9.5							
1.000 4.1 2.600	6.4 6.500 9.9							
©1982-	2017 XP Solutions							

Create Consulting Enginee	ers Ltd						Page 1
15 Princes Street		Wisb	ech				
Norwich		Area	11 At.	tenua	tion B	asin	4
Norfolk NR3 1AF			0 + CC	oonaa	01011 2		
							— Micro
Date 02/11/2017			gned b	-			Drain
File AREA 10.SRCX		Chec	ked by	BWA			Didini
XP Solutions		Sour	ce Con	trol	2017.1	.2	
					_		
<u>Summary of I</u>	Results	for 1(JU year	Retu	irn Pei	riod (+40%	<u>;)</u>
Sto	orm	Max	Max	Max	Max	Status	
	ent		Depth Co			50000	
		(m)	-	(1/s)	(m ³)		
15		1 700	0 000	1 C	246 4	0 77	
	n Summer n Summer				346.4 451.6	ОК	
	n Summer				451.6 560.4		
	n Summer				671.7		
	n Summer n Summer				736.5	ОК	
	n Summer n Summer						
					781.2		
	n Summer				840.2		
	n Summer n Summer				883.7 916.7		
	n Summer n Summer						
					942.9	ОК	
	n Summer				982.1	ОК	
	n Summer				1030.3	ОК	
	n Summer				1064.2	ОК	
	n Summer				1075.2	ОК	
	n Summer				1063.8	ОК	
	n Summer				1033.6	ОК	
	n Summer				1004.7		
	n Summer n Summer				976.6	ОК	
10000 111	II SUIIIIEI	2.212	0.112	1.0	949.5	0 K	
-		Data					
Sto		Rain			-	ime-Peak	
Sto: Even			Volume	Vol	ume	ime-Peak (mins)	
Eve	nt	(mm/hr)	Volume (m³)	Vol (m	ume	(mins)	
Even 15 min	nt Summer	(mm/hr)	Volume (m³) 0.0	Vol (m	ume 1 ³)	(mins) 19	
Even 15 min 30 min	Summer Summer	(mm/hr) 132.402 86.432	Volume (m ³) 0.0 0.0	Vol (m	ume ³) 135.7 135.8	(mins) 19 34	
Even 15 min 30 min 60 min	Summer Summer Summer	(mm/hr) 132.402 86.432 53.779	Volume (m ³) 0.0 0.0	Vol (m	ume 1 ³) 135.7 135.8 268.5	(mins) 19 34 64	
Even 15 min 30 min 60 min 120 min	Summer Summer Summer Summer	(mm/hr) 132.402 86.432 53.779 32.379	Volume (m ³) 0.0 0.0 0.0	Vol (m	ume (3) 135.7 135.8 268.5 253.0	(mins) 19 34 64 124	
Even 15 min 30 min 60 min 120 min 180 min	Summer Summer Summer Summer Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772	Volume (m ³) 0.0 0.0 0.0 0.0	Vol (m	ume 3 ³) 135.7 135.8 268.5 253.0 239.8	(mins) 19 34 64 124 184	
Even 15 min 30 min 60 min 120 min 180 min 240 min	Summer Summer Summer Summer Summer Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m	ume 135.7 135.8 268.5 253.0 239.8 233.7	(mins) 19 34 64 124 184 244	
Even 15 min 30 min 60 min 120 min 180 min 240 min 360 min	Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m	ume 135.7 135.8 268.5 253.0 239.8 233.7 230.4	(mins) 19 34 64 124 184 244 364	
Even 15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min	Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m	ume (135.7) 135.8 268.5 253.0 239.8 233.7 230.4 233.1	(mins) 19 34 64 124 184 244 364 484	
Even 15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m	ume (135.7 135.8 268.5 253.0 239.8 233.7 230.4 233.1 236.1	(mins) 19 34 64 124 184 244 364 484 604	
Even 15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m)) 2) 2) 2) 2) 2) 2) 2) 2) 2)	ume (135.7 135.8 268.5 253.0 239.8 233.7 230.4 233.1 236.1 238.1	(mins) 19 34 64 124 184 244 364 484 604 724	
Even 15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m)) 1) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2	ume (135.7) 135.8 268.5 253.0 239.8 233.7 230.4 233.1 236.1 238.1 240.1	(mins) 19 34 64 124 184 244 364 484 604 724 962	
Even 15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m)) 2) 2) 2) 2) 2) 2) 2) 2) 2)	ume (1) (1) (1) (1) (1) (1) (1) (1)	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442	
Even 15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ume (1) (1) (1) (1) (1) (1) (1) (1)	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160	
Even 15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min	A Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m)) 2) 2) 2) 2) 2) 2) 2) 2) 2)	ume () () () () () () () () () ()	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880	
Even 15 min 30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ume ³) 135.7 135.8 268.5 253.0 239.8 233.7 230.4 233.1 236.1 236.1 238.1 240.1 239.6 483.1 481.4 466.2	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320	
Even 15 min 30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	ume 3) 135.7 135.8 268.5 253.0 239.8 233.7 230.4 233.1 236.1 236.1 238.1 240.1 239.6 483.1 481.4 466.2 934.6	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5240	
Even 15 min 30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min	At Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	ume 3) 135.7 135.8 268.5 253.0 239.8 233.7 230.4 233.1 236.1 236.1 238.1 238.1 240.1 239.6 483.1 481.4 466.2 934.6 908.8	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5240 5904	
Even 15 min 30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min	At Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	ume 3) 135.7 135.8 268.5 253.0 239.8 233.7 230.4 233.1 236.1 236.1 238.1 240.1 239.6 483.1 481.4 466.2 934.6	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5240	

Create Consulting E	naineers I.td						Page 2
15 Princes Street	IIgIIIeels Ltu	Wisb	och				rage z
Norwich			11 Att	enuat	cion B	asın	
Norfolk NR3 1AF			0 + CC				— Micro
Date 02/11/2017		Desi	gned by	/ TF			
File AREA 10.SRCX		Chec	ked by	BWA			Draina
XP Solutions		Sour	ce Cont	rol 2	2017.1	.2	
Summar	y of Results	for 10)0 year	Retu	rn Per	iod (+40%)
	Storm	Max	Max	Max	Max	Status	
	Event		Depth Co			Status	
	Lvenc	(m)		1/s)	(m ³)		
	15	1 01 0	0 01 0	1 0	200 1	o	
	15 min Winter 30 min Winter				388.1 506.0	ОК ОК	
	60 min Winter				628.1		
	120 min Winter				753.2		
	180 min Winter				826.0		
	240 min Winter				876.4	0 K	
	360 min Winter				943.2	ОК	
	480 min Winter				992.7		
	600 min Winter				1030.5	ОК	
	720 min Winter				1060.7	0 K	
	960 min Winter	2.400	0.900	1.6	1106.4	ОК	
	1440 min Winter	2.446	0.946	1.7	1163.8	ОК	
;	2160 min Winter	2.482	0.982	1.7	1207.5	0 K	
:	2880 min Winter	2.496	0.996	1.7	1225.5	O K	
	4320 min Winter	2.495	0.995	1.7	1224.5	O K	
	5760 min Winter				1198.8	O K	
	7200 min Winter				1162.0	ΟK	
	8640 min Winter				1125.9		
1	0080 min Winter	2.309	0.009	1.0	1093.2	ΟK	
	Storm	Rain	Flooded	Disch	arge T:	ime-Peak	
	Storm Event		Flooded Volume	Disch Volu	-	ime-Peak (mins)	
					ume		
	Event	(mm/hr)	Volume (m³)	Volu (m [:]	ume 3)	(mins)	
	Event 15 min Winter	(mm/hr)	Volume (m³) 0.0	Volu (m ³	ume 3) 36.5	(mins) 19	
	Event	(mm/hr)	Volume (m³)	Volu (m ³ 1	ume 3)	(mins)	
	Event 15 min Winter 30 min Winter	(mm/hr) 132.402 86.432	Volume (m³) 0.0 0.0	Volu (m ³ 1 2	36.5 34.5	(mins) 19 34	
	Event 15 min Winter 30 min Winter 60 min Winter	(mm/hr) 132.402 86.432 53.779	Volume (m ³) 0.0 0.0 0.0	Volu (m ²) 1 2 2	36.5 34.5 62.0	(mins) 19 34 64	
	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter	(mm/hr) 132.402 86.432 53.779 32.379	Volume (m ³) 0.0 0.0 0.0 0.0	Volu (m ³ 1 2 2 2	36.5 34.5 62.0 39.2	(mins) 19 34 64 124	
	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 180 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 1 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1	(mins) 19 34 64 124 182	
	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 1 2 2 2 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1 34.2	(mins) 19 34 64 124 182 242	
	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1 34.2 41.1	(mins) 19 34 64 124 182 242 360	
	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m) 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1 34.2 41.1 45.8	(mins) 19 34 64 124 182 242 360 480	
	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1 34.2 41.1 45.8 48.8	(mins) 19 34 64 124 182 242 360 480 598 716 952	
1	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1 34.2 41.1 45.8 48.8 50.8 52.6 51.4	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426	
1 2	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 120 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 440 min Winter 160 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1 34.2 41.1 45.8 48.8 50.8 52.6 51.4 09.6	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120	
1 2 2	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 120 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 440 min Winter 160 min Winter 80 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1 34.2 41.1 45.8 48.8 50.8 52.6 51.4	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820	
1 2 2 4	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 120 min Winter 140 min Winter 140 min Winter 150 min Winter 150 min Winter 160 min Winter 160 min Winter 160 min Winter 160 min Winter 160 min Winter 170 min Winter 180 min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1 34.2 41.1 45.8 48.8 50.8 52.6 51.4 09.6 06.9 89.3	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152	
1 2 2 4 5	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 120 min Winter 140 min Winter 140 min Winter 150 min Winter 150 min Winter 150 min Winter 160 min Winter 160 min Winter 160 min Winter 160 min Winter 170 min Wi	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1 34.2 41.1 45.8 48.8 50.8 52.6 51.4 09.6 06.9 89.3 73.9	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472	
1 2 2 4 5 7	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 120 min Winter 140 min Winter 140 min Winter 150 min Winter 150 min Winter 150 min Winter 160 min Winter 160 min Winter 160 min Winter 170 min Wi	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1 34.2 41.1 45.8 48.8 50.8 52.6 51.4 09.6 06.9 89.3 73.9 61.3	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472 6632	
1 2 2 4 5 7 8	Event 15 min Winter 30 min Winter 60 min Winter 120 min Winter 120 min Winter 140 min Winter 140 min Winter 150 min Winter 150 min Winter 150 min Winter 160 min Winter 160 min Winter 160 min Winter 160 min Winter 170 min Wi	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.5 34.5 62.0 39.2 33.1 34.2 41.1 45.8 48.8 50.8 52.6 51.4 09.6 06.9 89.3 73.9	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472	

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 11 Attenuation Basin	4
Norfolk NR3 1AF	1:100 + CC	Micco
Date 02/11/2017	Designed by TF	
File AREA 10.SRCX	Checked by BWA	Digiliada
XP Solutions	Source Control 2017.1.2	

Rainfall Model	FSR	Winter Storms Yes	s
Return Period (years)	100	Cv (Summer) 0.750	C
Region	England and Wales	Cv (Winter) 0.840	D
M5-60 (mm)	19.000	Shortest Storm (mins) 15	5
Ratio R	0.416	Longest Storm (mins) 10080	D
Summer Storms	Yes	Climate Change % +40	C

<u>Time Area Diagram</u>

Total Area (ha) 1.400

Time	(mins)	Area
From:	To:	(ha)

0 4 1.400

Create Consu			ineers	s Lt	:d							P	age 4	
15 Princes S	Street	:			I	Wisbe	ch							
Norwich					2	Area 1	ll Atte	nuat	ion Ba	sin			L	
Norfolk NR3	3 1AF					1:100	+ CC						Vice	J.
Date 02/11/2	2017				l	Desig	ned by	ΤF						J
File AREA 10).SRCX	Χ			(Checke	ed by E	WA					Jrain	dIJĿ
XP Solutions	3					Source	e Conti	ol 2	017.1.	2				
					Ma	odel I	Details							
			Stora	age					n) 2.500					
				-			d Stru							
							l (m) 1		_					
			Deptl	n (m)					rea (m²)					
			(0.00	0 1	1230.0	1.0	00	1230.0					
			Hydro	-Bra	ake®	Optim	um Out	Elow	Contro	<u>1</u>				
								SHE-0	062-1700					
					-	Head				1	L.000			
				Des	-	low (l lush-F				Calcul	1.7			
								imis	e upstre					
						plicat					face			
					Sump	Availa	ble				Yes			
						eter (,				62			
						Level	. ,			1	L.500			
			outlet ed Mar	-							75 1200			
Control	Points	5	Head	(m)	Flow	(l/s)	c	ontro	l Points		Head	(m)	Flow	(1/s)
Design Point			1. ™ 0.			1.7 1.6	Mean Fl	ow ov	Kicl ver Head	k-Flo® Range				1.3 1.4
The hydrolog Hydro-Brake Hydro-Brake	B Optin	num as	speci	fied	. Sho	ould ar	nother t	ype o	f contro	l dev	ice ot	her	than a	
Depth (m)	Flow	(l/s)			Flow	(1/s)					:h (m)	Flo	w (l/s)
0.100		1.4		.200		1.8	3.0		2.		7.000		4.	
0.200		1.6		.400		2.0	3.5		3.		7.500		4.	
0.300 0.400		1.6 1.5		.600 .800		2.1 2.2	4.0 4.5		3.		8.000		4. 4.	
0.400		1.3		.000		2.2	4.3 5.0		3.		9.000		4. 4.	
0.600		1.3		.200		2.3	5.5		3.		9.500		4.	
0.800		1.5		.400		2.5	6.0		3.				· •	-
1.000		1.7		.600		2.6	6.5		4.					
				@1	000	2017 .	KP Solu	+ +						

Create Consulting Eng	ineers Ltd					
15 Princes Street		Wisb	ech			
Norwich		Area	12 Att	enua	tion B	asin
Norfolk NR3 1AF		1:10	0 + CC			
Date 02/11/2017			gned by	7 TT		
File AREA 12.SRCX			ked by			
XP Solutions		Sour	ce Cont	rol i	2017.1	.2
Summary	of Results	for 10	00 year	Retu	irn Per	riod (+40
	Storm	Max	Max Max Max Max			
	Event		Depth Co			Status
		(m)	-	1/s)	(m ³)	
	15 min Summer	1.781	0.281	8.3	1707.5	ΟK
	30 min Summer				2226.1	
	60 min Summer	1.954	0.454		2762.7	
1:	20 min Summer	2.044	0.544	8.3	3310.6	0 K
1:	80 min Summer	2.097	0.597	8.3	3629.7	0 K
2	40 min Summer	2.133	0.633	8.3	3850.8	0 K
	60 min Summer				4145.5	0 K
	80 min Summer				4363.4	
	00 min Summer				4529.2	
	20 min Summer 60 min Summer				4661.3	
	60 min Summer 40 min Summer				4859.8 5105.6	ОК
	40 min Summer 60 min Summer				5284.4	
	80 min Summer				5349.1	
	20 min Summer				5309.9	
	60 min Summer				5176.0	
72	00 min Summer	2.329	0.829		5045.2	
86	40 min Summer	2.308	0.808	8.3	4914.5	ОК
1008	80 min Summer	2.286	0.786	8.3	4785.0	ОК
	Storm	Rain			-	ime-Peak
	Storm Event		Volume	Vol	ume	ime-Peak (mins)
				Vol	-	
1.		(mm/hr)	Volume	Vol (m	ume	
	Event	(mm/hr)	Volume (m³) 0.0	Vol (m	ume 1 ³)	(mins)
3	Event 5 min Summer	(mm/hr)	Volume (m³) 0.0 0.0	Vol (m	.ume 1 ³) 703.5	(mins) 19
3 6 12	Event 5 min Summer 0 min Summer 0 min Summer 0 min Summer	(mm/hr) 132.402 86.432	Volume (m ³) 0.0 0.0 0.0	Vol (m	rume 1 ³) 703.5 713.4	(mins) 19 34 64 124
3 6 12 18	Event 5 min Summer 0 min Summer 0 min Summer 0 min Summer 0 min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Vol (m 14 13	ume ³) 703.5 713.4 420.2 390.0 356.5	(mins) 19 34 64 124 184
3 6 12 18 24	Event 5 min Summer 0 min Summer 0 min Summer 0 min Summer 0 min Summer 0 min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 14 13 13	ume ³) 703.5 713.4 420.2 390.0 356.5 322.8	(mins) 19 34 64 124 184 244
3 6 12 18 24 36	Event 5 min Summer 0 min Summer 0 min Summer 0 min Summer 0 min Summer 0 min Summer 0 min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 14 13 13 12	ume ³) 703.5 713.4 420.2 390.0 356.5 322.8 258.9	(mins) 19 34 64 124 184 244 364
3 6 12 18 24 36 48	Event 5 min Summer 0 min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 14 13 13 12 12	ume ³) 703.5 713.4 420.2 390.0 356.5 322.8 258.9 215.7	(mins) 19 34 64 124 184 244 364 484
3 6 12 18 24 36 48 60	Event 5 min Summer 0 min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 14 13 13 12 12	<pre>.ume .ume .ume .ume .ume .ume .ume .ume</pre>	(mins) 19 34 64 124 184 244 364 484 604
3 6 12 18 24 36 48 60 72	Event 5 min Summer 0 min Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m 14 13 13 12 12 12	ume () () () () () () () () () ()	(mins) 19 34 64 124 184 244 364 484 604 724
3 6 12 18 24 36 48 60 72 96	Event 5 min Summer 0 min Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m	une (1) (1) (1) (1) (1) (1) (1) (1)	(mins) 19 34 64 124 184 244 364 484 604 724 962
3 6 12 18 24 36 48 60 72 96 144	Event 5 min Summer 0 min Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m)	une (1) (1) (1) (1) (1) (1) (1) (1)	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442
3 6 12 18 24 36 48 60 72 96 144 216	Event 5 min Summer 0 min Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 14 13 13 14 15 12 12 12 12 12 12 12 12 12 12 12 12 12	une (1) (1) (1) (1) (1) (1) (1) (1)	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160
3 6 12 18 24 36 48 60 72 96 144 216 288	Event 5 min Summer 0 min Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 14 13 13 13 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	ume () () () () () () () () () ()	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880
3 6 12 18 24 36 48 60 72 96 144 216 288 432	Event 5 min Summer 0 min Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 14 13 13 14 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	ume () () () () () () () () () ()	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320
3 6 12 18 24 36 48 60 72 96 144 216 288 432 576	Event 5 min Summer 0 min Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 14 13 13 14 15 12 12 12 12 12 12 12 12 12 12 12 12 12	ume 13) 703.5 713.4 420.2 390.0 356.5 322.8 258.9 215.7 189.4 173.8 163.9 153.8 366.9 234.6 712.5	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5136
3 6 12 18 24 36 48 60 72 96 144 216 288 432 576 720	Event 5 min Summer 0 min Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 14 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12	ume 13) 703.5 713.4 420.2 390.0 356.5 322.8 258.9 215.7 189.4 173.8 163.9 153.8 366.9 234.6 712.5 522.6	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5136 5840
3 6 12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 5 min Summer 0 min Summer	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 14 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12	ume 13) 703.5 713.4 420.2 390.0 356.5 322.8 258.9 215.7 189.4 173.8 163.9 153.8 366.9 234.6 712.5	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5136

Create Consulting E	naineers I.td						Page 2
15 Princes Street	Ingringers Licu	Wisb	och				Laye 2
Norwich			12 Att	enua	tion B	asın	
Norfolk NR3 1AF			0 + CC				— Micro
Date 02/11/2017		Desi	gned by	/ TF			
File AREA 12.SRCX		Chec	ked by	BWA			Draina
XP Solutions		Sour	ce Cont	rol 2	2017.1	.2	
Summar	ry of Results	for 10)0 year	Retu	rn Per	riod (+40%)
	Storm	Max	Max	Max	Max	Status	
	Event	Level 1	Depth Co	ntrol	Volume		
		(m)	(m) (1/s)	(m³)		
	15 min Winter				1912.8	ОК	
	30 min Winter 60 min Winter				2494.0 3095.9	ОК	
	120 min Winter				3711.5	0 K	
	180 min Winter				4072.1	0 K	
	240 min Winter				4321.9	0 K	
	360 min Winter				4653.6	0 K	
	480 min Winter	2.305	0.805	8.3	4899.4	O K	
	600 min Winter				5087.6	O K	
	720 min Winter				5238.3	O K	
	960 min Winter				5466.9	O K	
	1440 min Winter				5755.8	O K	
	2160 min Winter 2880 min Winter				5979.0 6074.6	ОК	
	4320 min Winter				6081.0	O K	
	5760 min Winter				5963.7	0 K	
	7200 min Winter				5789.0	O K	
	8640 min Winter	2.423	0.923	8.3	5618.3	O K	
1	0080 min Winter	2.397	0.897	8.3	5459.4	ОК	
	Storm	Rain			-	ime-Peak	
	Event	(mm/hr)	Volume	Vol		(mins)	
			(m³)	/	3)		
				(11	,		
	15 min Winter	132,402				19	
	15 min Winter 30 min Winter		0.0	-	12.2	19 34	
	15 min Winter 30 min Winter 60 min Winter	86.432		-		19 34 64	
	30 min Winter	86.432	0.0	14	/12.2 /11.6	34	
	30 min Winter 60 min Winter	86.432 53.779	0.0 0.0 0.0	14	712.2 711.6 411.7	34 64	
	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter	86.432 53.779 32.379 23.772 18.994	0.0 0.0 0.0 0.0 0.0 0.0	14 13 12	712.2 711.6 411.7 359.0 299.3 255.8	34 64 124 182 242	
	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	86.432 53.779 32.379 23.772 18.994 13.738	0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 13 12 12	712.2 711.6 411.7 359.0 299.3 255.8 217.1	34 64 124 182 242 360	
	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	86.432 53.779 32.379 23.772 18.994 13.738 10.928	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 12 12 12	712.2 711.6 411.7 359.0 299.3 255.8 217.1 208.2	34 64 124 182 242 360 480	
	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 12 12 12 12	712.2 711.6 411.7 359.0 299.3 255.8 217.1 208.2 216.5	34 64 124 182 242 360 480 598	
	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 13 12 12 12 12 12	712.2 711.6 411.7 359.0 299.3 255.8 217.1 208.2 216.5 225.1	34 64 124 182 242 360 480 598 716	
	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 13 12 12 12 12 12 12 12 12	712.2 711.6 411.7 359.0 299.3 255.8 217.1 208.2 216.5 225.1 231.9	34 64 124 242 360 480 598 716 952	
1	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter 440 min Winter	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 13 12 12 12 12 12 12 12 12 12 12 12	712.2 711.6 411.7 359.0 299.3 255.8 217.1 208.2 216.5 225.1 231.9 220.9	34 64 124 242 360 480 598 716 952 1426	
1 2	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter 440 min Winter 160 min Winter	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 14 12 12 12 12 12 12 12 12 12 12 12 12 12	712.2 711.6 411.7 359.0 299.3 255.8 217.1 208.2 216.5 225.1 231.9 220.9 487.9	34 64 124 182 242 360 480 598 716 952 1426 2120	
1 2 2	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter 440 min Winter 160 min Winter 880 min Winter	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 14 13 12 12 12 12 12 12 12 12 12 12 12 12 12	712.2 711.6 411.7 359.0 299.3 255.8 217.1 208.2 216.5 225.1 231.9 220.9 487.9 468.6	34 64 124 182 242 360 480 598 716 952 1426 2120 2820	
1 2 2 4	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter 440 min Winter 160 min Winter	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 14 12 12 12 12 12 12 12 12 12 12 12 12 12	712.2 711.6 411.7 359.0 299.3 255.8 217.1 208.2 216.5 225.1 231.9 220.9 487.9	34 64 124 182 242 360 480 598 716 952 1426 2120	
1 2 2 4 5	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter 440 min Winter 160 min Winter 880 min Winter 320 min Winter	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 14 12 12 12 12 12 12 12 12 12 12 12 12 12	712.2 711.6 411.7 359.0 299.3 255.8 217.1 208.2 216.5 225.1 231.9 220.9 487.9 488.6 369.8	34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152	
1 2 2 4 5 7	30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 440 min Winter 160 min Winter 880 min Winter 320 min Winter 760 min Winter	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 12 12 12 12 12 12 12 12 12 12 12 12 12	712.2 711.6 411.7 359.0 299.3 255.8 217.1 208.2 216.5 225.1 231.9 220.9 487.9 488.6 369.8 336.7	34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472	

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 12 Attenuation Basin	<u> </u>
Norfolk NR3 1AF	1:100 + CC	Micco
Date 02/11/2017	Designed by TF	
File AREA 12.SRCX	Checked by BWA	Drainage
XP Solutions	Source Control 2017.1.2	1

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.000	Shortest Storm (mins) 15
Ratio R	0.416	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 6.900

Time	(mins)	Area
From:	To:	(ha)

0 4 6.900

Create Consu			ineer	s Lt									Pa	ge 4
15 Princes S	Street	-				Visbe	-							
Norwich					7	Area	12 Atte	enua	atio	n Basi	in		4	
Norfolk NR3	3 1AF				1	L:100	+ CC						N	
Date 02/11/2	2017				Ι	Desig	ned by	ΤF						
File AREA 12	2.SRC>	ζ			(Check	ed by 1	BWA						rainag
XP Solutions	S				5	Source	e Cont	rol	201	7.1.2				
					Mc	del 1	Detail:	<u>s</u>						
			Stor	age :	is Onl	ine C	over Lev	vel	(m) 2	2.500				
				<u>Tá</u>	ank o	r Pon	<u>id Stru</u>	ictu	<u>.re</u>					
					Inver	t Leve	el (m) 1	.500)					
			Deptl	n (m)) Area	(m²)	Depth	(m)	Area	(m²)				
			(0.00	06	085.0	1.0	000	6	085.0				
			<u>Hydro</u>	-Bra	ake®	Optim	uum Out	flo	w Co	ontrol				
							nce MD-	SHE-	-0134	-8400-				
					-	Head low (l						000 8.4		
				Des	-	lush-F				C	alcula			
							ive Mi	nimi	ise u					
					-	plicat					Surf			
					-	Availa eter (Yes 134		
				Ir		Level (· ·					500		
	Min	imum (Dutlet				. ,					150		
	S	uggest	ted Mar	nhole	e Diam	eter (mm)				1	200		
Control	Points	5	Head	(m)	Flow	(1/s)	c	ontr	rol P	oints	:	Head	(m) I	Flow (1/
Design Point) 1 ™ 0			8.4 8.3	Mean Fi	low	over		Flo® ange			
The hydrolog Hydro-Brake®														
Hydro-Brake	-		-											
Depth (m)	Flow	(1/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(1/s)
0.100		4.8		.200		9.1	1	000		14.1		.000		21.2
0.200		8.1		.400		9.8		500		15.2		.500		21.9
0.300 0.400		8.3 8.2		.600		10.5 11.1		000 500		16.2 17.1		.000		22.6 23.2
0.400		8.0	1	.000		11.6	1	000		18.0		.000		23.2
0.000		7.5		.200		12.2		500		18.8		.500		24.5
		7.6		.400		12.7	1	000		19.6				
0.600				.600		13.2	1	500		20.4				
0.600		8.4	2	.000		10.5					I			
0.600 0.800		8.4	2	. 000		10.12	1				I			
0.600 0.800		8.4	2.	. 000		10.1					I			

Create Consulting En	gineers Lt						Page 1
5 Princes Street							5
Jorwich		Area	a 2 Att	tenuat	ion Ba	asin	4
Norfolk NR3 1AF		1:10)0 + C(C			Micco
Date 12/09/2017		Desi	Igned b	by GS			
File AREA 2.SRCX		Chec	ked by	y BWA			Draina
XP Solutions			ce Cor		2017.	1.2	-
						-	
<u>Summary</u>	of Results	for 1	00 yea	r Retu	ırn Pe	riod (+40%)	_
	Storm	Max	Max	Max	Max	Status	
	Event		Depth C				
		(m)	(m)	(l/s)	(m³)		
1	5 min Summer	1.777	0.277	6.7	1370.9	ОК	
	0 min Summer				1787.2		
6	0 min Summer	1.948	0.448	6.7	2218.0	ОК	
12	0 min Summer	2.037	0.537	6.7	2657.7	O K	
18	0 min Summer	2.089	0.589	6.7	2913.8		
24	0 min Summer	2.124	0.624	6.7	3091.2		
	0 min Summer				3327.6		
	0 min Summer				3502.3		
60	0 min Summer 0 min Summer	2.234	0.756	6.7	3635.3		
	0 min Summer 0 min Summer				3741.2 3900.2		
	0 min Summer				4097.2		
216	0 min Summer	2.357	0.857	6.7	4240.1		
	0 min Summer				4291.7		
	0 min Summer				4259.8		
576	0 min Summer	2.338	0.838	6.7	4150.0	O K	
720	0 min Summer	2.317	0.817	6.7	4041.8	O K	
	0 min Summer				3934.6		
	0 min Summer				3828.4		
1	5 min Winter 0 min Winter	1.810	0.310	6.7		ок ок	
	Storm	Rain	Floode	d Disch	narge I	ime-Peak	
	Event	(mm/hr)	Volume			(mins)	
			(m³)	(m	3)		
	min Summer				564.3	19	
	min Summer	86.432			572.5	34	
	min Summer min Summer	53.779			L39.6	64 124	
	min Summer min Summer	32.379 23.772			L14.6)86.4	124 184	
		18.994)58.0	244	
	min Summer	13.738			04.5	364	
	min Summer	10.928			968.8	484	
600	min Summer	9.143			947.5	604	
720	min Summer	7.900	0.	0 9	935.3	724	
	min Summer	6.269	0.	0 9	928.8	962	
	min Summer	4.519			922.7	1442	
	min Summer	3.253			386.1	2160	
	min Summer	2.574			360.1	2880	
	min Summer	1.848			791.6	4320	
5/60	min Summer min Summer	1.459 1.215			768.9 519.4	5240 5912	
7007	mini Summer	1.215			19.4 170.9	5912 6656	
	min Summer		υ.	J J J			
8640	min Summer min Summer		Ο	0 33	329.6	7456	
8640 10080	min Summer min Summer min Winter	0.920			329.6 571.4	7456 19	
8640 10080 15	min Summer	0.920	0.	0 5			

	ngineers Lt		,						
Princes Street		_	Wisbech						
orwich		-	Area 2 Attenuation Basin						
orfolk NR3 1AF		- • -	1:100 + CC						
ate 12/09/2017		Des	Designed by GS						
ile AREA 2.SRCX		Cheo	Checked by BWA						
? Solutions		Sour	rce Con	trol 2	2017.1	2			
0		C 1	0.0	Del					
<u>Summary</u>	of Results	IOT 1	<u>uu year</u>	<u>Retui</u>	rn Pei	<u>100 (+40</u>			
	Storm	Max	Max	Max	Max	Status			
	Event	Level (m)	Depth Co (m)	ontrol ((1/s)	Volume (m³)				
	60 min Winter	2 002	0 502	67	2485.5	ОК			
	20 min Winter				2979.7				
	30 min Winter				3269.2				
2	40 min Winter	2.201	0.701	6.7	3469.6	ΟK			
3	60 min Winter	2.255	0.755	6.7	3735.8	ΟK			
	30 min Winter				3933.0	O K			
	00 min Winter				4084.0				
	20 min Winter				4205.0				
	50 min Winter 40 min Winter				4388.3 4620.1				
	60 min Winter 60 min Winter				4799.0				
	30 min Winter				4875.8				
	20 min Winter				4880.5				
57	60 min Winter	2.467	0.967	6.7	4786.3	ОК			
	00 min Winter				4645.4				
	40 min Winter 30 min Winter				4503.9 4374.7				
	Storm		Rain Flooded Discharge Time-Peal			ime-Peak			
	Event	(mm/hr)	Volume	Volu	me	(mins)			
			(m³)	(m³)				
6) min Winter	53.779	0.0) 11	32.4	64			
			0.0						
12) min Winter			10	87.7				
18) min Winter	32.379 23.772	0.0) 10) 10	87.7 36.7	124 182			
18) min Winter	32.379 23.772	0.0) 10) 10	36.7 00.1	124 182 242			
18 24 36) min Winter) min Winter) min Winter	32.379 23.772 18.994 13.738	0.0 0.0 0.0	10 10 10 10 10 10 10 10 10 10 10	36.7 00.1 68.0	124 182 242 360			
18 24 36 48) min Winter) min Winter) min Winter) min Winter	32.379 23.772 18.994 13.738 10.928	0.0 0.0 0.0 0.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36.7 00.1 68.0 61.3	124 182 242 360 480			
18 24 36 48 60) min Winter) min Winter) min Winter) min Winter) min Winter	32.379 23.772 18.994 13.738 10.928 9.143	0.0 0.0 0.0 0.0 0.0	107 1	36.7 00.1 68.0 61.3 68.8	124 182 242 360 480 598			
18 24 36 48 60 72	<pre>0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter</pre>	32.379 23.772 18.994 13.738 10.928 9.143 7.900	0.0 0.0 0.0 0.0 0.0 0.0	103 1	36.7 00.1 68.0 61.3 68.8 76.1	124 182 242 360 480 598 716			
18 24 36 48 60 72 96	<pre>0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter</pre>	32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269	0.0 0.0 0.0 0.0 0.0 0.0 0.0	10 10 10 10 10 10 10 9	36.7 00.1 68.0 61.3 68.8	124 182 242 360 480 598 716 952			
18 24 36 48 60 72 96 144	<pre>0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter</pre>	32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253		10 10	36.7 00.1 68.0 61.3 68.8 76.1 82.2	124 182 242 360 480 598 716 952			
18 24 36 48 60 72 96 144 216	<pre>0 min Winter 0 min Winter</pre>	32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253		10 10 <td>36.7 00.1 68.0 61.3 68.8 76.1 82.2 75.2</td> <td>124 182 242 360 480 598 716 952 1426</td>	36.7 00.1 68.0 61.3 68.8 76.1 82.2 75.2	124 182 242 360 480 598 716 952 1426			
18 24 36 48 60 72 96 144 216 288 432	<pre>0 min Winter 0 min Winter</pre>	32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848		103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 113 113	36.7 00.1 68.0 61.3 68.8 76.1 82.2 75.2 84.4	124 182 242 360 480 598 716 952 1426 2120			
18 24 36 48 60 72 96 144 216 288 432 576	<pre>0 min Winter 0 min Winter</pre>	32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459		103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 113 113	36.7 00.1 68.0 61.3 68.8 76.1 82.2 75.2 84.4 71.2 97.2 60.9	124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472			
18 24 36 48 60 72 96 144 216 288 432 576 720	<pre>0 min Winter 0 min Winter</pre>	32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215		103 1033 1033 1034	36.7 00.1 68.0 61.3 68.8 76.1 82.2 75.2 84.4 71.2 97.2 60.9 56.0	124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472 6696			
18 24 36 48 60 72 96 144 216 288 432 576 720 864	<pre>0 min Winter 0 min Winter</pre>	32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045		103 1033 1033	36.7 00.1 68.0 61.3 68.8 76.1 82.2 75.2 84.4 71.2 97.2 60.9 56.0 65.2	124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472 6696			

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 2 Attenuation Basin	L.
Norfolk NR3 1AF	1:100 + CC	Micco
Date 12/09/2017	Designed by GS	
File AREA 2.SRCX	Checked by BWA	Dialitada
XP Solutions	Source Control 2017.1.2	

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.000	Shortest Storm (mins) 15
Ratio R	0.416	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 5.540

Time	(mins)	Area
From:	To:	(ha)

0 4 5.540

Create Consulting Engineers Ltd		Page 4
15 Princes Street	Wisbech	
Norwich	Area 2 Attenuation Basin	4
Norfolk NR3 1AF	1:100 + CC	Micco
Date 12/09/2017	Designed by GS	
File AREA 2.SRCX	Checked by BWA	Drainage
XP Solutions	Source Control 2017.1.2	
<u>1</u>	<u>Model Details</u>	
Storage is of	nline Cover Level (m) 2.500	
Tank	<u>or Pond Structure</u>	
Inve	rt Level (m) 1.500	
Depth (m) Are	ea (m²) Depth (m) Area (m²)	
0.000	4950.0 1.000 4950.0	
<u>Hydro-Brake®</u>	Optimum Outflow Control	
Unit	Reference MD-SHE-0121-6700-1000-6700	
-	n Head (m) 1.000	
5	Flow (1/s) 6.7 Flush-Flo™ Calculated	
	Flush-Flo™ Calculated Objective Minimise upstream storage	
A	pplication Surface	
-	Available Yes	
	meter (mm) 121 Level (m) 1.500	
Minimum Outlet Pipe Dia		
Suggested Manhole Dia	meter (mm) 1200	
Control Po	ints Head (m) Flow (1/s)	
Design Point (Ca	alculated) 1.000 6.7	
	Flush-Flo™ 0.297 6.7	
	Kick-Flo® 0.652 5.5	
Mean Flow over H	Head Range - 5.8	
Hydro-Brake® Optimum as specified.	een based on the Head/Discharge relatio Should another type of control device o	ther than a
Hydro-Brake Optimum® be utilised the invalidated	n these storage routing calculations wi	ll be
Depth (m) Flow (1/s) Depth (m) Flow	w (l/s) Depth (m) Flow (l/s) Depth (m)	Flow (1/s)
0.100 4.3 1.200	7.3 3.000 11.2 7.000	16.8
0.200 6.5 1.400	7.8 3.500 12.1 7.500	17.4
0.300 6.7 1.600	8.3 4.000 12.9 8.000	17.9
0.400 6.6 1.800	8.8 4.500 13.6 8.500	18.5
0.500 6.4 2.000 0.600 6.0 2.200	9.3 5.000 14.3 9.000 9.7 5.500 15.0 9.500	19.0 19.5
0.800 6.0 2.400	10.1 6.000 15.6	19.5
1.000 6.7 2.600	10.5 6.500 16.2	
©1982-	-2017 XP Solutions	

	gineers Lt	d					Page 1
15 Princes Street			bech				-
Norwich		Area	a 3 Att	enuat	ion Ba	asin	4
Norfolk NR3 1AF)0 + CC		20		
Date 12/09/2017			igned b				– Micro
			2	-			Drainac
File AREA 3.SRCX			cked by				Brainac
XP Solutions		Soui	rce Con	trol	2017.1	1.2	
_					_		
<u>Summary (</u>	<u>of Results</u>	for 1	<u>00 year</u>	Retu	<u>rn Pe</u>	riod (+40%))
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth Co	ntrol	Volume		
		(m)	(m) ((1/s)	(m³)		
		1 770	0 070	7 0	1 5 0 0 1	0.11	
	5 min Summer) min Summer				1502.1		
) min Summer) min Summer				2430.4		
) min Summer				2912.4		
) min Summer				3193.2		
) min Summer				3387.7		
) min Summer				3647.1		
) min Summer				3838.9		
) min Summer			7.3	3985.0	ОК	
720) min Summer	2.260	0.760	7.3	4101.4	0 K	
) min Summer				4276.5	0 K	
1440) min Summer	2.332	0.832	7.3	4493.8		
216) min Summer	2.362	0.862	7.3	4652.7	0 K	
) min Summer				4711.2		
432) min Summer	2.367	0.867	7.3	4680.0		
) min Summer				4562.3		
) min Summer) min Summer				4445.7 4329.9		
) min Summer				4215.1		
1!	5 min Winter	1.812	0.312	7.3	1682.8		
30) min Winter	1.906	0.406	7.3		O K	
	Storm	Rain			-	ime-Peak	
	Storm Event		Volume	Vol	ume	ime-Peak (mins)	
					ume		
15	Event min Summer	(mm/hr)	Volume (m ³) 0.0	Vol i (m	ume 3) 512.8	(mins) 19	
15 30	Event min Summer min Summer	(mm/hr) 132.402 86.432	Volume (m³) 0.0 0.0	Vol i (m	ume 3) 512.8 521.8	(mins) 19 34	
15 30 60	Event min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779	Volume (m ³) 0.0 0.0	Vol 1 (m	ume 3) 512.8 521.8 238.1	(mins) 19 34 64	
15 30 60 120	Event min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379	Volume (m ³) 0.0 0.0 0.0	Vol (m 6 12 12	ume 3) 512.8 521.8 238.1 211.9	(mins) 19 34 64 124	
15 30 60 120 180	Event min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Vol: (m 6 12 12	ume 3) 512.8 521.8 238.1 211.9 .82.3	(mins) 19 34 64 124 184	
15 30 60 120 180 240	Event min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 12 12 11	ume 3) 512.8 521.8 238.1 211.9 .82.3 .52.6	(mins) 19 34 64 124 184 244	
15 30 60 120 180 240 360	Event min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 12 12 12 11 11 11	ume 3) 512.8 521.8 238.1 211.9 .82.3	(mins) 19 34 64 124 184	
15 30 60 120 180 240 360 480	Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 12 12 11 11 11 10 10	212.8 521.8 521.8 238.1 211.9 .82.3 .52.6 095.8	(mins) 19 34 64 124 184 244 364	
15 30 60 120 180 240 360 480 600	Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 6) 2) 12) 12) 12) 12) 12) 12) 12	3) 512.8 521.8 521.8 521.8 52.3 52.3 52.6 95.8 956.8	(mins) 19 34 64 124 184 244 364 484	
15 30 60 120 180 240 360 480 600 720	Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol: (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	212.8 521.8 521.8 521.8 521.8 521.8 521.8 521.8 521.9 52.6 52.6 552.6 555.8 556.8 556.8 533.3	(mins) 19 34 64 124 184 244 364 484 604	
15 30 60 120 180 240 360 480 600 720 960	Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol: (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	3) 512.8 521.8 238.1 211.9 .82.3 .52.6 095.8 056.8 033.3 019.6	(mins) 19 34 64 124 184 244 364 484 604 724	
15 30 60 120 180 240 360 480 600 720 960 1440 2160	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol: (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	3) 512.8 521.8 238.1 211.9 .82.3 .52.6 095.8 056.8 033.3 019.6 011.4 003.9 054.5	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol: (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	3) 512.8 521.8 238.1 211.9 .82.3 .52.6 95.8 95.8 956.8 933.3 919.6 911.4 903.9 954.5 925.1	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol: (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	<pre>ume 3) 512.8 521.8 521.8 238.1 211.9 .82.3 .52.6 095.8 033.3 019.6 011.4 003.9 054.5 025.1 048.3</pre>	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol: (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	3) 512.8 521.8 521.8 238.1 211.9 .82.3 .52.6 095.8 056.8 033.3 019.6 011.4 003.9 054.5 025.1 048.3 .01.2	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5248	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol: (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	3) 512.8 521.8 521.8 521.8 521.8 538.1 211.9 52.6 95.8 95.1 948.3 91.2 938.6	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5248 5912	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol: (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	3) 512.8 521.8 521.8 521.8 521.8 538.1 211.9 52.6 95.8 95.1 948.3 938.6 977.1	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5248 5912 6656	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045 0.920	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol: (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	3) 512.8 521.8 521.8 521.8 521.8 538.1 211.9 52.6 95.8 95.1 948.3 95.1 948.3 958.6 977.1 923.4	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5248 5912 6656 7456	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045 0.920	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol: (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	3) 512.8 521.8 521.8 521.8 521.8 538.1 211.9 52.6 95.8 95.1 948.3 938.6 977.1	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5248 5912 6656	

15 Princes Street Norwich Norfolk NR3 1AF					
orfolk NR3 1AF		Wisk	bech		
		Area	a 3 Att	enuatior	n Basin
10/00/0017		1:10)0 + CC		
Date 12/09/2017		Des	gned b	y GS	
File AREA 3.SRCX		Cheo	ked by	BWA	
P Solutions		Soui	ce Con	trol 201	L7.1.2
<u>Summary</u>	of Results	for 1	<u>)0 year</u>	Return	Period
	Storm	Max	Max	Max M	ax Statu
	Event	Level (m)	-	ntrol Vo (1/s) (1	lume n ³)
	60 min Winter	2.004	0.504	7.3 272	23.5 0
1	20 min Winter	2.105	0.605	7.3 32	65.2 O
	80 min Winter			7.3 358	82 . 5 0 1
	40 min Winter				
	60 min Winter			7.3 40	
	80 min Winter 00 min Winter			7.3 43 7.3 44	
	20 min Winter 20 min Winter			7.3 44	
	60 min Winter			7.3 483	
	40 min Winter			7.3 50	
21	60 min Winter	2.475	0.975	7.3 52	64 . 8 0 3
	80 min Winter			7.3 53	
	20 min Winter			7.3 53	
	60 min Winter 00 min Winter				
	00 min Winter 40 min Winter			7.3 510 7.3 49	
	80 min Winter			7.3 49	
	Storm	Rain	Flooded	Dischar	ge Time-Pea
	Event	(mm/hr)	Volume		(mins)
			(m³)	(m³)	
6	0 min Winter	53.779	0.0	1230	. 8
12	0 min Winter	32.379	0.0	1184	.2 1
18	0 min Winter				
	0 min Winter	18.994	0.0	1091	
24				1000	.2 3
24 36	0 min Winter	13./38	0.0		
24 36 48	0 min Winter 0 min Winter	10.928	0.0	1048	.2 4
24 36 48 60	0 min Winter 0 min Winter 0 min Winter	10.928 9.143	0.0	1048 1055	.2 4 .7 5
24 36 48 60 72	0 min Winter 0 min Winter 0 min Winter 0 min Winter	10.928 9.143 7.900	0.0	1048 1055 1063	.2 4 .7 5 .5 7
24 36 48 60 72 96	0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter	13.738 10.928 9.143 7.900 6.269	0.0 0.0 0.0 0.0	1048 1055 1063 1069	.2 4: .7 5: .5 7: .9 9:
24 36 48 60 72 96 144	0 min Winter 0 min Winter 0 min Winter 0 min Winter	13.738 10.928 9.143 7.900 6.269 4.519	0.0 0.0 0.0 0.0 0.0	1048 1055 1063 1069 1061	.2 4 .7 5 .5 7 .9 9 .5 14
24 36 48 60 72 96 144 216	0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter 0 min Winter	13.738 10.928 9.143 7.900 6.269 4.519 3.253		1048 1055 1063 1069 1061 2162	.2 4 .7 5 .5 7 .9 9 .5 14 .1 21
24 36 48 60 72 96 144 216 288 432	0 min Winter 0 min Winter	13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848		1048 1055 1063 1069 1061 2162 2146 2064	.2 .4 .7 .5 .5 .7 .9 .9 .5 .14 .1 .21 .7 .28 .2 .41
24 36 48 60 72 96 144 216 288 432 576	0 min Winter 0 min Winter	13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1048 1055 1063 1069 1061 2162 2146 2064 4205	.2 .4 .7 .5 .5 .7 .9 .9 .5 .14 .1 .21 .7 .28 .2 .41 .5 .54
24 36 48 60 72 96 144 216 288 432 576 720	0 min Winter 0 min Winter	13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215		1048 1055 1063 1069 1061 2162 2146 2064 4205 4091	.2 4: .7 .5 .5 .7 .9 .9 .5 .14: .1 .21: .7 .28: .2 .41 .5 .54: .5 .54:
24 36 48 60 72 96 144 216 288 432 576 720 864	0 min Winter 0 min Winter	13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1048 1055 1063 1069 1061 2162 2146 2064 4205 4091 3991	.2 .4 .7 .5 .5 .7 .9 .9 .5 .14 .1 .21 .7 .28 .2 .41 .5 .54

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 3 Attenuation Basin	<u> </u>
Norfolk NR3 1AF	1:100 + CC	Micco
Date 12/09/2017	Designed by GS	Drainare
File AREA 3.SRCX	Checked by BWA	Digitigh
XP Solutions	Source Control 2017.1.2	1

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.000	Shortest Storm (mins) 15
Ratio R	0.416	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 6.070

Time	(mins)	Area
From:	To:	(ha)

0 4 6.070

Create Consulting Engineers Ltd		Page 4
15 Princes Street	Wisbech	
Norwich	Area 3 Attenuation Basin	Mar I
Norfolk NR3 1AF	1:100 + CC	Micco
Date 12/09/2017	Designed by GS	
File AREA 3.SRCX	Checked by BWA	Digiliada
XP Solutions	Source Control 2017.1.2	
	adal Dataila	
<u>M</u>	odel Details	
Storage is Or	line Cover Level (m) 2.500	
Tank	or Pond Structure	
Inve	rt Level (m) 1.500	
Depth (m) Are	a (m ²) Depth (m) Area (m ²)	
0.000	5400.0 1.000 5400.0	
Hydro-Brake®	Optimum Outflow Control	
Unit	Reference MD-SHE-0126-7300-1000-7300	
-	n Head (m) 1.000	
	Flow (l/s) 7.3 Flush-Flo™ Calculated	
	Objective Minimise upstream storage	
	oplication Surface	
1	Available Yes neter (mm) 126	
	Level (m) 1.500	
Minimum Outlet Pipe Dia		
Suggested Manhole Dia	meter (mm) 1200	
Control Po:	ints Head (m) Flow (l/s)	
	lculated) 1.000 7.3	
	lush-Flo™ 0.301 7.3 Kick-Flo® 0.658 6.0	
Mean Flow over H		
Hydro-Brake® Optimum as specified.	een based on the Head/Discharge relati Should another type of control device n these storage routing calculations w	other than a
Depth (m) Flow (l/s) Depth (m) Flow	(l/s) Depth (m) Flow (l/s) Depth (m)	Flow (l/s)
0.100 4.5 1.200	7.9 3.000 12.2 7.000	18.3
0.200 7.1 1.400	8.5 3.500 13.2 7.500	
0.300 7.3 1.600	9.1 4.000 14.0 8.000	
0.400 7.2 1.800 0.500 7.0 2.000	9.6 4.500 14.8 8.500 10.1 5.000 15.6 9.000	
0.500 7.0 2.000 0.600 6.5 2.200	10.1 5.000 15.6 9.000 10.6 5.500 16.3 9.500	
0.800 6.6 2.400	11.0 6.000 17.0	21.0
1.000 7.3 2.600	11.4 6.500 17.7	
©1982-	2017 XP Solutions	

Create Consulting Eng	gineers Lto	d					Page 1
15 Princes Street		Wisk	bech				
Norwich			a 4 Att	enuat	ion Ra	asin	4
Norfolk NR3 1AF)0 + CC			~~ ± + +	
							- Micro
Date 12/09/2017			.gned k	-			Drainage
File AREA 4.SRCX			cked by				
XP Solutions		Sour	ce Cor	ntrol	2017.1	.2	
<u>Summary c</u>	of Results	for 10	00 year	<u>r Retu</u>	irn Pe	riod (+40%)	
	Storm	Max	Max	Max	Max	Status	
	Event		Depth C				
		(m)	(m)	(1/s)	(m³)		
15	min Summer	1.779	0.279	1.9	418.2	ОК	
) min Summer			1.9			
	min Summer				676.4		
) min Summer) min Summer			1.9 1.9			
) min Summer				942.9		
) min Summer				1014.6		
480) min Summer	2.212	0.712	1.9	1067.3	O K	
) min Summer				1107.5		
) min Summer				1139.4		
) min Summer) min Summer				1187.2 1246.2		
) min Summer				1240.2		
	min Summer				1303.3		
4320) min Summer	2.361	0.861	1.9	1292.0	O K	
) min Summer				1256.3		
) min Summer				1221.0		
) min Summer) min Summer				1186.8 1153.7		
	min Winter				468.5		
) min Winter			1.9			
	0 h a ann	Dein	5 1	1 Di - 1		ing Deal	
	Storm Event	Rain	Volume		narge 1 ume	ime-Peak (mins)	
	Lvenc	((m ³)		1 ³)	(11115)	
			()	(111	,		
	min Summer 3				164.8	19	
		86.432			166.9	34	
	min Summer min Summer	53.779 32.379			331.7 320.9	64 124	
		23.772	0.		320.9 307.3	124	
	min Summer	18.994	0.		295.1	244	
	min Summer	13.738	0.		282.8	364	
	min Summer	10.928	0.		278.1	484	
	min Summer	9.143			277.9	604	
	min Summer min Summer	7.900 6.269			280.0 282.5	724 962	
	min Summer min Summer	6.269 4.519	0.		282.5 282.2	962 1442	
	min Summer	3.253			569.2	2160	
	min Summer	2.574			567.7	2880	
2000	min Summer	1.848	0.	0 5	550.8	4320	
	IIIIII Sulliller		~	0 11	122.3	5352	
4320 5760	min Summer	1.459					
4320 5760 7200	min Summer min Summer	1.215	0.	0 10	085.8	5976	
4320 5760 7200 8640	min Summer min Summer min Summer	1.215 1.045	0. 0.	0 10 0 10	085.8 051.2	5976 6736	
4320 5760 7200 8640 10080	min Summer min Summer min Summer min Summer	1.215 1.045 0.920	0. 0. 0.	0 10 0 10 0 10	085.8 051.2 019.6	5976 6736 7464	
4320 5760 7200 8640 10080 15	min Summer min Summer min Summer min Summer min Winter	1.215 1.045 0.920	0. 0. 0.	0 10 0 10 0 10 0 10	085.8 051.2	5976 6736	
4320 5760 7200 8640 10080 15	min Summer min Summer min Summer min Winter min Winter	1.215 1.045 0.920 132.402 86.432	0. 0. 0.	0 10 0 10 0 10 0 10	085.8 051.2 019.6 166.7 166.2	5976 6736 7464 19	

5 Princes Street Wisbech Jorwich Area 4 Attenuation Basin Jorfolk NR3 1AF 1:100 + CC Designed by GS Checked by BWA Source Control 2017.1.2 Source Control 2017.1.2 Summary of Results for 100 year Return Period (+ Nax Storm Max Max Max Event Level Depth Control Volume (m) (m) 60 min Winter 2.005 0.505 1.9 758.1 0 K 120 min Winter 2.165 0.665 1.9 997.2 0 K 140 min Winter 2.259 0.759 1.9 1058.1 0 K 120 min Winter 2.259 0.759 1.9 1058.1 0 K 460 min Winter 2.259 0.759 1.9 1199.9 0 K 600 min Winter 2.354 0.830 1.9 1244.7 0 K 720 min Winter 2.438 0.938 1.9 1407.2 0 K 2160 min Winter 2.449 0.979 2.0 1484.6 0 K 4320 min Winter 2.449 0.970 2.0 1484.6 0 K 4320 min Winter 2.449 0.970 2.0 1484.6 0 K 4320 min Winter 2.439 0.989 2.0 1484.6 K 5100 min Winter 2.377 0.0 327.7 64 120 min Winter 2.3779 <th>reate Consulting En</th> <th></th> <th></th> <th> 1-</th> <th></th> <th></th> <th></th>	reate Consulting En			1-			
Storm Rain Flooded Discrete 11:100 + CC Designed by GS Checked by BWA 2 Solutions Source Control 2017.1.2 Summary of Results for 100 year Return Period (+ Event Nax Max Max Max Max Status 60 min Winter 2.050 0.505 1.9 785.1 0 K 100 min Winter 2.165 0.606 1.9 909.1 0 K 100 min Winter 2.165 0.606 1.9 909.1 0 K 100 min Winter 2.105 0.755 1.9 913.0 0 K 100 min Winter 2.105 0.759 1.9 113.0 0 K 300 min Winter 2.205 0.759 1.9 113.0 0 K 400 min Winter 2.30 0.831 1.9 1244.7 0 K 7200 min Winter 2.490 0.989 2.0 1484.1 0 K 2160 min Winter 2.490 0.990 2.0 1448.8 K	5 Princes Street		_				
ate 12/09/2017 Designed by GS ile AREA 4.SRCX Checked by BWA P Solutions Source Control 2017.1.2 Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 100 year Return Period (4. Summary of Results for 10.0 set (4.) Sum winter 2.330 0.830 Sum winter 2.430 0.938 Sum winter 2.438 0.938 Sum winter 2.438 0.938 Storm Rain Flooded Discharge Time-Peak (7.) Storm R	orwich		Area	a 4 At	tenuat	ion Ba	sin
Storm Max Max Max Max Start 60 min Winter 2.005 0.505 1.9 758.1 0 K 120 min Winter 2.005 0.505 1.9 9758.1 0 K 120 min Winter 2.005 0.505 1.9 9758.1 0 K 120 min Winter 2.016 0.606 1.9 909.1 0 K 120 min Winter 2.016 0.606 1.9 909.1 0 K 120 min Winter 2.016 0.606 1.9 909.1 0 K 180 min Winter 2.016 0.665 1.9 997.2 0 K 360 min Winter 2.050 0.759 1.9 1138.0 0 K 360 min Winter 2.330 0.830 1.9 1244.7 0 K 360 min Winter 2.439 0.938 1.9 1407.2 0 K 360 min Winter 2.439 0.939 2.0 1484.1 0 K 3760 min Winter 2.439 0.939 2.0	orfolk NR3 1AF		1:10	00 + 0	CC		
P Solutions Source Control 2017.1.2 Source Control Volume (m) (m) (1/s) (m²) Source Control Volume (m) (m) (1/s) (m²) Source Control Volume (m) (m) (1/s) (m²) 60 min Winter 2.005 0.505 1.9 758.1 0 K 10 min Winter 2.165 0.665 1.9 909.1 0 K 10 min Winter 2.165 0.665 1.9 909.1 0 K 360 min Winter 2.259 0.759 1.9 1133.0 0 K 600 min Winter 2.259 0.759 1.9 1139.0 0 K 600 min Winter 2.354 0.854 1.9 1281.4 0 K 900 min Winter 2.438 0.938 1.9 1138.0 0 K 1.9 100 Minter 2.438 0.938 1.9 112.4 0 K 900 2.0 1484.1 0 K 900 2.0 1484.1 0 K 4320 min Winter 2.470 0.970 2.0 1485.6 0 K 7200 min Winter 2.470 0.970 2.0 1485.6 0 K 7200 min Winter 2.470 0.970 2.0 1485.6 0 K 7200 min Winter 2.385 0.885 1.9 1327.4 0 K 1000 327.7 64							

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 4 Attenuation Basin	L.
Norfolk NR3 1AF	1:100 + CC	Micco
Date 12/09/2017	Designed by GS	
File AREA 4.SRCX	Checked by BWA	Digiliada
XP Solutions	Source Control 2017.1.2	

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.000	Shortest Storm (mins) 15
Ratio R	0.416	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 1.690

Time	(mins)	Area
From:	To:	(ha)

0 4 1.690

Create Consulting Engineers Ltd	Page 4
15 Princes Street	Wisbech
Norwich	Area 4 Attenuation Basin
Norfolk NR3 1AF	1:100 + cc
Date 12/09/2017	Designed by GS
File AREA 4.SRCX	Checked by BWA
XP Solutions	Source Control 2017.1.2
1	Model Details
Storage is Or	nline Cover Level (m) 2.500
Tank	or Pond Structure
Inve	ert Level (m) 1.500
Depth (m) Are	ea (m²) Depth (m) Area (m²)
0.000	1500.0 1.000 1500.0
	1
<u>Hydro-Brake®</u>	Optimum Outflow Control
	Reference MD-SHE-0067-2000-1000-2000
-	n Head (m) 1.000 Flow (l/s) 2.0
5	Flush-Flo™ Calculated
	Objective Minimise upstream storage
	Application Surface
1	Available Yes meter (mm) 67
	Level (m) 1.500
Minimum Outlet Pipe Dia	
Suggested Manhole Dia	umeter (mm) 1200
	vints Head (m) Flow (l/s)
	alculated) 1.000 2.0 Flush-Flo™ 0.296 1.9
1	Flush-Flo™ 0.296 1.9 Kick-Flo® 0.599 1.6
Mean Flow over H	
Hydro-Brake® Optimum as specified.	been based on the Head/Discharge relationship for the Should another type of control device other than a
Hydro-Brake Optimum® be utilised the invalidated	en these storage routing calculations will be
Depth (m) Flow (1/s) Depth (m) Flow	w (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)
0.100 1.6 1.200	2.2 3.000 3.3 7.000 4.9
0.200 1.9 1.400	2.3 3.500 3.5 7.500 5.1
0.300 1.9 1.600	2.5 4.000 3.8 8.000 5.2
0.400 1.9 1.800 0.500 1.8 2.000	2.6 4.500 4.0 8.500 5.4 2.7 5.000 4.2 9.000 5.5
0.600 1.6 2.200	2.9 5.500 4.4 9.500 5.7
0.800 1.8 2.400	3.0 6.000 4.6
1.000 2.0 2.600	3.1 6.500 4.7
	-2017 XP Solutions

Create Consulting End	gineers Lto	d					Page 1
15 Princes Street			bech				
Norwich		Ares	a 5 A++	enuati	on Ra	asin	14
Norfolk NR3 1AF			10 + C(
		-					- Micro
Date 12/09/2017			igned k	-			Drainac
File AREA 5.SRCX		Cheo	cked by	7 BWA			
XP Solutions		Soui	cce Cor	ntrol 2	2017.1	L.2	
Summary of	of Results	for 1	00 <u>yea</u> :	r Retui	rn Pe	riod (+40%)	
	Storm	Max	Max	Max	Max	Status	
	Event		-	ontrol			
		(m)	(m)	(1/s)	(m³)		
15	5 min Summer	1.780	0.280	4.0	826.4	ОК	
30) min Summer	1.865	0.365	4.0	1077.4	ОК	
60) min Summer	1.953	0.453	4.0	1337.0	O K	
120) min Summer	2.043	0.543	4.0	1601.9		
180) min Summer	2.095	0.595	4.0	1756.3		
26) min Summer	2 1 0 0	0 600	1 0	1863.3		
361	0 min Summer 0 min Summer	∠.⊥0U 2.215	0.715	4.U. 4 0 ·	2005.4 2110.0	ок ок	
60) min Summer	2.242	0.742	4.0	2110.0 2189.5		
) min Summer				2252.8		
) min Summer				2347.6	O K	
1440) min Summer	2.335	0.835	4.0	2464.5		
) min Summer				2548.4		
2880) min Summer) min Summer	2.374	0.874	4.0	2577.4		
4320) min Summer) min Summer	2.300	0.866	4.0	2554.7 2485.0		
7201) min Summor	2 310	0 910	1 0	2416.8		
864) min Summer	2.297	0.797	4.0	2349.9	ОК	
T0080	J min Summer	2.2/4	0.//4	4.0	2284.6		
11	5 min Winter	1.814	0.314	4.0	925.8		
) min Winter	1.909	0.409	4.0	1207.1	O K	
	Storm	Rain	Floode	d Discha	arge I	ime-Peak	
	Event	(mm/hr)	Volume	volu	me	(mins)	
			(m³)	(m³)		
15	min Summer	132 /02	0.	0 3	37.2	19	
		86.432			37.2 41.3	34	
		53.779			78.7	64	
120	min Summer	32.379		0 6	60.1	124	
		23.772			38.2	184	
		18.994			15.2	244	
	min Summer min Summer	13.738			83.8 67.4	364 484	
	min Summer	9.143			67.4 60.1	484 604	
	min Summer	7.900			58.5	724	
	min Summer	6.269			62.2	962	
	min Summer	4.519			60.5	1442	
	min Summer	3.253			34.2	2160	
	min Summer	2.574			28.2	2880	
	min Summer min Summer	1.848 1.459			91.6 59.8	4320 5248	
	min Summer	1.459			59.8 76.7	5912	
	min Summer	1.045			95.8	6664	
	min Summer	0.920			21.5	7456	
			0	0 2	11 1	19	
	min Winter				41.1		
	min Winter min Winter	132.402 86.432			41.1 40.1	34	

	g Engineers Lt	.d				
5 Princes Street		Wisł	bech			
Jorwich		Area	a 5 At	tenuat	ion Ba	asin
Norfolk NR3 1AF		1:10	00 + C	С		
Date 12/09/2017		Desi	igned	by GS		
Tile AREA 5.SRCX			cked b	-		
IP Solutions				ntrol	2017.1	.2
						-
Summa	ry of Results	for 1	00 yea	<u>r Retu</u>	arn Pe	riod (+
	Storm Event	Max Level	Max Depth (Max Control	Max Volume	Status
		(m)	(m)	(1/s)	(m ³)	
	60 min Winter	2.008	0.508	4.0	1498.3	ОК
	120 min Winter				1796.3	
	180 min Winter	2.168	0.668	4.0	1970.7	ОК
	240 min Winter	2.209	0.709	4.0	2091.2	ΟK
	360 min Winter	2.263	0.763	4.0	2251.2	ΟK
	480 min Winter	2.303	0.803	4.0	2369.7	ΟK
	600 min Winter	2.334	0.834	4.0	2460.3	ΟK
	720 min Winter	2.359	0.859	4.0	2532.8	ОК
	960 min Winter				2642.7	ОК
	1440 min Winter	2.443	0.943	4.0	2781.1	ОК
	2160 min Winter				2887.3	ΟK
	2880 min Winter	2.494	0.994	4.0	2932.0	ОК
	4320 min Winter	2.494	0.994	4.0	2932.2	ОК
	5760 min Winter	2.474	0.974	4.0	2873.1	ΟK
	7200 min Winter	2.445	0.945	4.0	2786.5	ΟK
	8640 min Winter	2.415	0.915	4.0	2698.3	ΟK
	10080 min Winter	2.388	0.888	4.0	2619.3	0 K
	Storm	Rain	Floode	ed Discl	harge T	ime-Peak
	Event	(mm/hr)	Volum	e Vol	ume	(mins)
			(m³)	(m	l ³)	
	60 min Winter	53.779	0.	.0	672.4	64
	120 min Winter	32.379	Ο.	.0	636.5	124
	180 min Winter	23.772	0.		600.6	182
	240 min Winter	18.994	0.	.0	582.6	242
	200 MITH MINCEL	13./30	0.	.0	571.7	360
	480 min Winter	10.928	0.	.0	577.0	480
	600 min Winter			.0	584.2	598
	720 min Winter			.0 !	588.9	716
	960 min Winter	6.269	0.	.0	593.3	952
	1440 min Winter			.0	590.5	1426
	2160 min Winter	3.253	0.		198.5	2120
	2880 min Winter		0.		192.4	2820
	4320 min Winter				151.7	
	5760 min Winter	1.459	0.	.0 23	317.4	5472
	7200 min Winter	1.215	0.	.0 22	267.0	
	8640 min Winter	1.045	0.		220.1	
	0080 min Winter					7864

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 5 Attenuation Basin	<u> </u>
Norfolk NR3 1AF	1:100 + CC	Micco
Date 12/09/2017	Designed by GS	Drainare
File AREA 5.SRCX	Checked by BWA	Diginarie
XP Solutions	Source Control 2017.1.2	1

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.000	Shortest Storm (mins) 15
Ratio R	0.416	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 3.340

Time (mins) Area From: To: (ha)

0 4 3.340

Create Consulting Engineers Ltd	P	Page 4
15 Princes Street	Wisbech	
Norwich	Area 5 Attenuation Basin	4
Norfolk NR3 1AF	1:100 + CC	Micco
Date 12/09/2017	Designed by GS	
File AREA 5.SRCX	Checked by BWA	namada
XP Solutions	Source Control 2017.1.2	
1	<u>Model Details</u>	
Storage is O	nline Cover Level (m) 2.500	
Tank	<u>or Pond Structure</u>	
Inve	rt Level (m) 1.500	
Depth (m) Are	ea (m²) Depth (m) Area (m²)	
0.000	2950.0 1.000 2950.0	
Hvdro-Brake®	Optimum Outflow Control	
	Reference MD-SHE-0095-4000-1000-4000 n Head (m) 1.000	
-	Flow (1/s) 4.0	
_	Flush-Flo™ Calculated	
7	Objective Minimise upstream storage pplication Surface	
	pplication Surface Available Yes	
-	meter (mm) 95	
	Level (m) 1.500	
Minimum Outlet Pipe Dia Suggested Manhole Dia		
Control Po	ints Head (m) Flow (l/s)	
Design Point (Ca	alculated) 1.000 4.0	
I	Flush-Flo™ 0.294 4.0	
Mean Flow over H	Kick-Flo® 0.629 3.2 Head Range - 3.5	
Mean Flow Over 1	leau range – 5.5	
Hydro-Brake® Optimum as specified.	een based on the Head/Discharge relations Should another type of control device oth n these storage routing calculations will	ner than a
Depth (m) Flow (1/s) Depth (m) Flow	(1/s) Depth (m) Flow (1/s) Depth (m) Fl	low (l/s)
0.100 3.0 1.200	4.3 3.000 6.7 7.000	10.0
0.200 3.9 1.400	4.7 3.500 7.2 7.500	10.3
0.300 4.0 1.600 0.400 3.9 1.800	5.0 4.000 7.6 8.000 5.3 4.500 8.1 8.500	10.6 10.9
0.400 3.9 1.800 0.500 3.8 2.000	5.5 4.500 8.1 8.500 5.5 5.000 8.5 9.000	10.9
0.600 3.4 2.200	5.8 5.500 8.9 9.500	11.5
0.800 3.6 2.400	6.0 6.000 9.3	
1.000 4.0 2.600	6.2 6.500 9.6	

Create Consulting Engine	ers Ltd					
15 Princes Street		Wisb	ech			
Norwich		Area	6 Att	enuat	ion Ba	sin
Norfolk NR3 1AF		1:10	0 + CC			
Date 02/11/2017		Desi	gned b	V TF		
File AREA 6.SRCX			-	-		
			ked by			
XP Solutions		Sour	ce Con	trol	2017.1	.2
Summary of	<u>Results</u>	for 10)0 year	<u>Retu</u>	irn Pei	riod (+40
St	orm	Max	Max	Max	Max	Status
Ev	ent	Level	Depth Co	ontrol	Volume	
		(m)	-	(l/s)	(m³)	
15 m	in Summer	1.781	0.281	7.0	1427.8	ОК
	in Summer				1861.4	ОК
60 m.	in Summer	1.955	0.455	7.0	2310.0	ОК
	in Summer				2768.0	O K
	in Summer				3034.8	O K
	in Summer				3219.6	O K
	in Summer				3465.8	O K
	in Summer in Summer				3647.5 3785.7	ОК
	in Summer				3895.7	0 K
	in Summer				4060.8	0 K
	in Summer				4265.0	ОК
2160 m	in Summer	2.369	0.869	7.0	4412.5	ОК
2880 m	in Summer	2.379	0.879	7.0	4464.8	0 K
	in Summer				4428.9	ΟK
	in Summer				4313.9	ОК
	in Summer in Summer				4201.8	
	in Summer				4090.3 3980.3	ОК
					5500.5	0 10
10000 m						
Sto		Rain	Flooded	1 Discl	harge T:	ime-Peak
	orm		Flooded Volume		harge T: ume	ime-Peak (mins)
Sto	orm			Vol	-	
Sto Eve	orm	(mm/hr)	Volume (m³)	Vol (m	ume 1 ³)	
Sto Eve 15 mi	orm	(mm/hr)	Volume (m ³)	Vol (m	ume	(mins)
Sto Eve 15 mi 30 mi	orm ont n Summer	(mm/hr)	Volume (m ³) 0.0	Vol (m	.ume 1 ³) 590.0	(mins) 19
Stc Eve 15 mi 30 mi 60 mi 120 mi	n Summer n Summer n Summer n Summer n Summer	(mm/hr) 132.402 86.432	Volume (m ³) 0.0 0.0	Vol (m	.ume 1 ³) 590.0 597.4	(mins) 19 34 64 124
Stc Eve 15 mi 30 mi 60 mi 120 mi 180 mi	n Summer n Summer n Summer n Summer n Summer n Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772	Volume (m ³) 0.0 0.0 0.0 0.0	Vol (m) (1) 1) 1) 1	ume 1³) 590.0 597.4 188.7 160.8 129.8	(mins) 19 34 64 124 184
Stc Eve 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi	n Summer n Summer n Summer n Summer n Summer n Summer n Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m) 5) 12) 12) 12) 12	ume 1 ³) 590.0 597.4 188.7 160.8 129.8 098.3	(mins) 19 34 64 124 184 244
Stc Eve 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi	n Summer n Summer n Summer n Summer n Summer n Summer n Summer n Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m) 5) 12) 12) 12) 12) 12) 12) 12	ume 1 ³) 590.0 597.4 188.7 160.8 129.8 098.3 042.4	(mins) 19 34 64 124 184 244 364
Stc Eve 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi	erm ent n Summer n Summer n Summer n Summer n Summer n Summer n Summer n Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) (2)) 12) 12) 12) 12) 10 () 10 () 10	ume 590.0 597.4 188.7 160.8 129.8 098.3 042.4 008.0	(mins) 19 34 64 124 184 244 364 484
Stc Eve 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi	erm ent n Summer n Summer n Summer n Summer n Summer n Summer n Summer n Summer n Summer n Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	vol (m) (%)) 11) 111) 111) 110) 110) 110) 110) 110) 120) 120	ume 1 ³) 590.0 597.4 188.7 160.8 129.8 098.3 042.4 008.0 988.3	(mins) 19 34 64 124 184 244 364 484 604
Stc Eve 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi	erm ent n Summer n Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 0 5 0 111 0 112 0 110 0 100 0 100 0 100 0 100 0 100 0 100	ume 590.0 597.4 188.7 160.8 129.8 098.3 042.4 008.0 988.3 977.9	(mins) 19 34 64 124 184 244 364 484 604 724
Stc Eve 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi	erm ent n Summer n Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m)) 5) 111) 111) 111) 111) 110) 110) 100) 100) 100) 100) 100) 100) 100) 100	ume 590.0 597.4 188.7 160.8 129.8 098.3 042.4 008.0 988.3 977.9 975.1	(mins) 19 34 64 124 184 244 364 484 604 724 962
Stc Eve 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi	erm ent n Summer n Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 0 5 0 111 0 111 0 111 0 110 0 110 0 100	ume 3) 590.0 597.4 188.7 160.8 129.8 098.3 042.4 008.0 988.3 977.9 975.1 968.2	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442
Stc Eve 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi	erm ent a Summer a Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 0 5 0 111 0 111 0 111 0 110 0 100	ume 590.0 597.4 188.7 160.8 129.8 098.3 042.4 008.0 988.3 977.9 975.1	(mins) 19 34 64 124 184 244 364 484 604 724 962
Stc Eve 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi	erm ent n Summer n Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 0 5 0 111 0 111 0 111 0 110 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100	ume 590.0 597.4 188.7 160.8 129.8 098.3 042.4 008.0 988.3 977.9 975.1 968.2 975.6	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160
Stc Eve 15 mi 30 mi 60 mi 120 mi 120 mi 120 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi	erm ent summer a Summer a Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 0 5 0 111 0 111 0 111 0 110 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100	ume 590.0 597.4 188.7 160.8 129.8 098.3 042.4 008.0 988.3 977.9 975.1 968.2 975.6 951.6	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880
Stc Eve 15 mi 30 mi 60 mi 120 mi 120 mi 120 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi 5760 mi	erm ent summer en Summer en Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 0 5 0 111 0 111 0 111 0 111 0 110 0 110 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100	ume 590.0 597.4 188.7 160.8 129.8 098.3 042.4 008.0 988.3 977.9 975.1 968.2 975.6 951.6 878.4	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320
Stc Eve 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi 5760 mi 7200 mi	erm ent a Summer a Summ	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 0 5 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 10 0 10 0 10 0 10 0 12 0 14 0 33 0 36	ume 590.0 597.4 188.7 160.8 129.8 098.3 042.4 008.0 988.3 977.9 975.1 968.2 975.6 951.6 878.4 941.5	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5240

	neers Ltd						Page 2
Create Consulting Engi 15 Princes Street		Wisb	ech				raye z
					1 P		
Norwich			6 Atte	enuat	ion Ba	sın	
Norfolk NR3 1AF			0 + CC				— Micro
Date 02/11/2017		Desi	gned by	y TF			
File AREA 6.SRCX		Chec	ked by	BWA			Draina
XP Solutions		Sour	ce Cont	rol 1	2017.1	.2	
Summary c	of Results	for 10)0 year	Retu	ırn Per	ciod (+40%	<u>)</u>
	Storm	Max		Max	Max	Status	
	Event		Depth Co				
		(m)	(m) (1/s)	(m³)		
15	min Winter	1.815	0.315	7.0	1599.5	ОК	
) min Winter				2085.5	0 K	
60) min Winter	2.010	0.510	7.0	2588.6	0 K	
) min Winter			7.0	3103.5	0 K	
) min Winter				3404.9		
) min Winter				3613.6	0 K	
) min Winter				3890.6	ОК	
) min Winter				4095.7		
) min Winter) min Winter				4252.8 4378.5	ОК	
) min Winter) min Winter				4569.0	0 K	
) min Winter				4809.4	0 K	
) min Winter				4994.5	0 K	
) min Winter				5073.0	ОК	
4320) min Winter	2.499	0.999	7.0	5075.6	ОК	
5760) min Winter	2.479	0.979	7.0	4975.3	ΟK	
7200) min Winter	2.450	0.950	7.0	4827.1	O K	
) min Winter				4681.7		
10080) min Winter	2.395	0.895	7.0	4547.0	ОК	
	Storm	Rain			-	ime-Peak	
	Storm Event		Volume	Vol	ume	ime-Peak (mins)	
				Vol	-		
:	Event	(mm/hr)	Volume	Vol (m	ume		
15		(mm/hr)	Volume (m³)	Vol (m	ume	(mins)	
15 30	Event min Winter	(mm/hr) 132.402 86.432	Volume (m ³) 0.0 0.0	Vol (m	ume 1 ³)	(mins) 19	
15 30 60	Event min Winter min Winter	(mm/hr) 132.402 86.432	Volume (m ³) 0.0 0.0 0.0	Vol (m	ume 1 ³) 596.9 595.5	(mins) 19 34	
15 30 60 120 180	Event min Winter min Winter min Winter min Winter min Winter	(mm/hr) 132.402 86.432 53.779	Volume (m ³) 0.0 0.0 0.0 0.0	Vol (m	ume 1 ³) 596.9 595.5 180.1	(mins) 19 34 64 124 182	
15 30 60 120 180 240	Event min Winter min Winter min Winter min Winter min Winter min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 11 12 10 10	ume 3) 596.9 595.5 180.1 130.5 075.1 039.8	(mins) 19 34 64 124 182 242	
15 30 60 120 180 240 360	Event min Winter min Winter min Winter min Winter min Winter min Winter min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 12 12 10 10 10	ume 596.9 595.5 180.1 130.5 075.1 039.8 010.6	(mins) 19 34 64 124 182 242 360	
15 30 60 120 180 240 360 480	Event min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vol (m 55 12 12 12 12 12 12 12 12 12 12 12 12 12	ume 596.9 595.5 180.1 130.5 075.1 039.8 010.6 007.6	(mins) 19 34 64 124 182 242 360 480	
15 30 60 120 180 240 360 480 600	Event min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	vol (m	ume 596.9 595.5 180.1 130.5 075.1 039.8 010.6 007.6 017.5	(mins) 19 34 64 124 182 242 360 480 598	
15 30 60 120 180 240 360 480 600 720	Event min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	vol (m	ume 596.9 595.5 180.1 130.5 075.1 039.8 010.6 007.6 017.5 025.1	(mins) 19 34 64 124 182 242 360 480 598 716	
15 30 60 120 180 240 360 480 600 720 960	Event min Winter min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 55 55 12 12 12 12 12 12 12 12 12 12 12 12 12	ume () () () () () () () () () ()	(mins) 19 34 64 124 182 242 360 480 598 716 952	
15 30 60 120 180 240 360 480 600 720 960 1440	Event min Winter min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 55 12 12 12 12 12 12 12 12 12 12 12 12 12	ume () () () () () () () () () ()	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426	
15 30 60 120 180 240 360 480 600 720 960 1440 2160	Event min Winter min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 55 12 12 12 12 12 12 12 12 12 12 12 12 12	ume () () () () () () () () () ()	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	Event min Winter min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 55 12 12 12 12 12 12 12 12 12 12 12 12 12	ume () () () () () () () () () ()	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	Event min Winter min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 55 12 12 12 12 12 12 12 12 12 12 12 12 12	ume () () () () () () () () () ()	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Event min Winter min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 55 55 12 12 12 12 12 12 12 12 12 12 12 12 12	ume () () () () () () () () () ()	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Event min Winter min Winter	<pre>(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vol (m) 55 55 12 12 12 12 12 12 12 12 12 12 12 12 12	ume () () () () () () () () () ()	(mins) 19 34 64 124 182 242 360 480 598 716 952 1426 2120 2820 4152	

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 6 Attenuation Basin	4
Norfolk NR3 1AF	1:100 + CC	Micco
Date 02/11/2017	Designed by TF	
File AREA 6.SRCX	Checked by BWA	Digiliada
XP Solutions	Source Control 2017.1.2	

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.000	Shortest Storm (mins) 15
Ratio R	0.416	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 5.770

Time	(mins)	Area
From:	To:	(ha)

0 4 5.770

Create Consu			ineers	s Lt									Pa	.ge 4	
15 Princes S	Street					Wisbe									
Norwich							6 Atte	nua	tion	Basi	n			L	1
Norfolk NR3	3 1AF					1:100							Ν	lica	\int
Date 02/11/2	ce 02/11/2017 Designed by TF											ר היירי			
File AREA 6	le AREA 6.SRCX Checked by BWA									Inall	laye				
XP Solutions Source Control 2017.1.2															
					Mo	odel I	Detail	<u>s</u>							
			Stora	age :	is Onl	line C	over Le	vel	(m)	2.500					
				<u>Ta</u>	ank o	r Pon	<u>d Stri</u>	ictu	<u>ire</u>						
					Inver	t Leve	l (m) 1	L.50	0						
			Deptl	n (m)) Area	a (m²)	Depth	(m)	Area	(m²)					
			(0.00	0 5	5080.0	1.	000	5	080.0					
			Hydro	-Bra	ake®	Optim	um Out	flc	w Co	ontrol	-				
							nce MD-	-SHE	-0124	-7000-					
					-	Head					1	.000			
				Des	-	low (l lush-F				0	alcul	7.0			
							ive M:	inim	ise u						
						plicat				-		face			
					-	Availa						Yes			
				т.,		eter (,				1	124 .500			
	Min	imum (Dutlet			Level eter (. ,				1	150			
			ed Mar	-								1200			
Control	Points	5	Head	(m)	Flow	(l/s)	0	Cont	rol P	oints		Head	(m)	Flow	(l/s)
Design Point			1. ™0.			7.0 7.0	Mean F	low	over	Kick- Head F					5.7 6.0
The hydrolog Hydro-Brake Hydro-Brake	® Optim Optimu	num as nm® be	speci: utili:	fied sed	. Sho then t	ould an these s	nother storage	type rou	of d ting	control calcul	devi ation	ce ot s wil	her t l be	han a inval	a Lidat
Depth (m)	F.TOM	(1/s)	Depth	(m)	FTOM	(1/s)	Depth	(m)	FTOM	(1/s)	Dept	n (m)	F.TOM	/ (1/s	5)
0.100		4.4		.200		7.6		000		11.7		7.000		17.	
0.200		6.8		.400		8.2		500		12.6	1	7.500		18.	
0.300 0.400		7.0 6.9		.600 .800		8.7 9.2		000 500		13.5 14.2	1	8.000 8.500		18. 19.	
0.400		6.7		.000		9.2 9.7		000		14.2		9.000		19.	
0.600		6.2		.200		10.1		500		15.7	1	9.500		20.	
0.800		6.3		.400		10.6		000		16.3					
1.000		7.0		.600		11.0		500		17.0					
							XP Sol								

Create Consulting Er	ngineers Lt	.d					Page 1
15 Princes Street		Wisk	bech				
Norwich		Area	a 7 Atte	enuati	on Ba	sin	4
Norfolk NR3 1AF		1:10)0 + CC				
Date 12/09/2017			Igned by				- Micro
				-			Drainag
File AREA 7.SRCX			cked by				
XP Solutions		Sour	rce Cont	trol 2	017.1	.2	
<u>Summary</u>	of Results		-)
	Storm	Max		Max	Max	Status	
	Event	(m)	Depth Co				
		(111)	(m) (1/5)	(m³)		
1	L5 min Summer	1.779	0.279	2.3	460.1	ОК	
	30 min Summer				599.8		
e	50 min Summer	1.951	0.451	2.3	744.2	ОК	
12	20 min Summer	2.040	0.540	2.3	891.3	ОК	
	30 min Summer				977.0	ОК	
	10 min Summer			2.3 1	036.2	O K	
36	50 min Summer	2.176	0.676	2.3 1	114.7		
	30 min Summer				172.3		
	00 min Summer				215.9		
	20 min Summer				250.5		
	50 min Summer				302.0		
	10 min Summer				364.7		
	50 min Summer				407.9		
	30 min Summer 20 min Summer				420.8		
	50 min Summer				402.2		
)0 min Summer				319.5		
	40 min Summer				280.0		
1008	30 min Summer	2.253	0.753	2.3 1	241.9		
1	15 min Winter	- 1 812	0 312	23	515.5		
3	30 min Winter	1.907	0.407	2.3	672.0	O K	
	Storm	Rain	Flooded	Discha	rge Ti	ime-Peak	
	Event	(mm/hr)	Volume	Volur	ne	(mins)	
			(m³)	(m³))		
15	5 min Summer	132.402				19	
	5 min Summer) min Summer	132.402 86.432	0.0	19) 2.8 6.3	19 34	
30			0.0	19 19	2.8		
30) min Summer	86.432	0.0 0.0 0.0	19 19 39	2.8	34	
30 60 120 180) min Summer) min Summer) min Summer) min Summer	86.432 53.779	0.0 0.0 0.0 0.0	19 19 39 38	2.8 6.3 0.6	34 64	
30 60 120 180 240) min Summer) min Summer) min Summer) min Summer) min Summer	86.432 53.779 32.379 23.772 18.994	0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35	2.8 6.3 0.6 1.3 8.9 5.7	34 64 124 184 244	
3(60 120 180 240 360) min Summer) min Summer) min Summer) min Summer) min Summer) min Summer	86.432 53.779 32.379 23.772 18.994 13.738	0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33	2.8 6.3 0.6 1.3 8.9 5.7 7.8	34 64 124 184 244 364	
3(6) 120 180 240 360 480) min Summer) min Summer) min Summer) min Summer) min Summer) min Summer) min Summer	86.432 53.779 32.379 23.772 18.994 13.738 10.928	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3	34 64 124 184 244 364 484	
3(6() 12(18(24(36(48(60() min Summer) min Summer	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32 32	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9	34 64 124 184 244 364 484 604	
3(6() 12(18(24(36(48(60(72() min Summer) min Summer	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32 32 32	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9 2.8	34 64 124 184 244 364 484 604 724	
3(60) 120 180 240 360 480 600 720 960	<pre>) min Summer) min Summer</pre>	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32 32 32 32 32	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9 2.8 4.9	34 64 124 184 244 364 484 604 724 962	
3(60) 120 180 240 360 480 600 720 960 1440	<pre>) min Summer) min Summer</pre>	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32 32 32 32 32 32	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9 2.8 4.9 4.8	34 64 124 184 244 364 484 604 724 962 1442	
3(6(12) 18(24(36(48(60(72(96(144(216(<pre>) min Summer) min Summer</pre>	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32 32 32 32 32 32 65	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9 2.8 4.9 4.8 5.1	34 64 124 184 244 364 484 604 724 962 1442 2160	
3(60 120 180 240 360 480 600 720 960 1440 2160 2880	<pre>) min Summer) min Summer</pre>	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32 32 32 32 32 32 65 65	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9 2.8 4.9 4.8 5.1 1.4	34 64 124 184 244 364 484 604 724 962 1442 2160 2880	
3(60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	<pre>) min Summer) min Summer</pre>	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 32 32 32 32 32 32 65 65 63	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9 2.8 4.9 4.8 5.1 1.4 2.6	34 64 124 244 364 484 604 724 962 1442 2160 2880 4320	
3(60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	<pre>) min Summer) min Summer</pre>	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32 32 32 32 32 32 65 65 63 131	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9 2.8 4.9 4.8 5.1 1.4 2.6 0.9	34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5136	
3(60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 720	<pre>) min Summer) min Summer</pre>	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32 32 32 32 32 32 32 32 32 32 32 32	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9 2.8 4.9 4.8 5.1 1.4 2.6	34 64 124 244 364 484 604 724 962 1442 2160 2880 4320	
3(60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	<pre>) min Summer) min Summer</pre>	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32 32 32 32 32 32 32 32 32 32 32 32	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9 2.8 4.9 4.8 5.1 1.4 2.6 0.9 2.0	34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5136 5840	
3(60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	<pre>) min Summer) min Summer</pre>	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045 0.920	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32 32 32 32 32 32 32 32 32 32 32 32	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9 2.8 4.9 4.8 5.1 1.4 2.6 0.9 2.0 3.0	34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5136 5840 6656	
30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	<pre>) min Summer) min Summer</pre>	86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045 0.920	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 19 39 38 36 35 33 32 32 32 32 32 32 32 32 32 32 32 32	2.8 6.3 0.6 1.3 8.9 5.7 7.8 8.3 3.9 2.8 4.9 4.8 5.1 1.4 2.6 0.9 2.0 3.0 6.6	34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4320 5136 5840 6656 7368	

5 Princes S		td				
	treet	Wis!	bech			
wich		Area	a 7 Atte	enuat	ion Ba	sin
orfolk NR3	1AF	1:10	00 + CC			
ate 12/09/2			igned by	V CS		
			-	-		
ile AREA 7.SRCX			cked by		001 - 1	
P Solutions			rce Cont			
<u>1</u>	<u>Summary of Result</u>	<u>s for 1</u>	<u>00 year</u>	Retu	irn Pei	riod (+
	Storm	Max		Max	Max	Status
	Event	Level (m)	Depth Co (m) (ntrol 1/s)	Volume (m³)	
	60 min Winte	r 2 005	0 505	23	834.0	ОК
	120 min Winte				999.7	
	180 min Winte				1096.5	
	240 min Winte				1163.3	
	360 min Winte	r 2.259	0.759	2.3	1251.7	
	480 min Winte	r 2.298	0.798	2.3	1317.1	
	600 min Winte	r 2.328	0.828	2.3	1366.9	
	720 min Winte				1406.7	
	960 min Winte				1466.7	
	1440 min Winte	r 2.434	0.934	2.3	1541.4	ОК
	2160 min Winte	r 2.468	0.968	2.3	1597.2	ΟK
	2880 min Winte	r 2.481	0.981	2.3	1618.9	ΟK
	4320 min Winte				1613.4	ΟK
	5760 min Winte				1575.4	
	7200 min Winte	r 2.423	0.923	2.3	1523.1	
	8640 min Winte 10080 min Winte	r 2.393	0.893	2.3	1472.9 1426.3	
		Rain	Floodod	Diach		ima Dool
		Rain			-	ime-Peak (mins)
	Storm	(mm /h m)			unie	(mins)
	Storm Event	(mm/hr)	(m ³)	(m	3)	
			(m³)	(m	3) 387.8	64
	Event	53.779	(m³) 0.0	(m		
	Event 60 min Winter 120 min Winter	53.779 32.379	(m³) 0.0 0.0	(m	387.8	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter	53.779 32.379 23.772 18.994	(m ³) 0.0 0.0 0.0 0.0	(m 3 3	387.8 367.6	124
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	53.779 32.379 23.772 18.994 13.738	(m ³) 0.0 0.0 0.0 0.0 0.0	(m 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	387.8 367.6 347.0 336.5 329.8	124 182
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	53.779 32.379 23.772 18.994 13.738 10.928	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0	(m 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	387.8 367.6 347.0 336.5 329.8 332.2	124 182 242 360 480
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter	53.779 32.379 23.772 18.994 13.738 10.928 9.143	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m 33 33 33 33 33 33 33 33 33 33 33 33 33	387.8 367.6 347.0 336.5 329.8 332.2 336.5	124 182 242 360 480 598
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m 333 333 333 333 333 333 333 333 333 3	387.8 367.6 347.0 336.5 329.8 332.2 336.5 339.4	124 182 242 360 480 598 716
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	387.8 367.6 347.0 336.5 329.8 332.2 336.5 339.4 342.3	124 182 242 360 480 598 716 952
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter 1440 min Winter	53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m	387.8 367.6 347.0 336.5 329.8 332.2 336.5 339.4 342.3 341.4	124 182 242 360 480 598 716 952 1426
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter 1440 min Winter 2160 min Winter	53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m 33 33 33 33 33 33 33 33 33 33 33 33 33	387.8 367.6 347.0 336.5 329.8 332.2 336.5 339.4 342.3 341.4 589.8	124 182 242 360 480 598 716 952 1426 2120
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter	53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m 33 33 33 33 33 33 33 33 33 33 33 33 33	387.8 367.6 347.0 336.5 329.8 332.2 336.5 339.4 342.3 341.4 589.8 587.3	124 182 242 360 480 598 716 952 1426 2120 2820
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter	53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m 33 33 33 33 33 33 33 33 33 33 33 33 33	387.8 367.6 347.0 336.5 329.8 332.2 336.5 339.4 342.3 341.4 589.8 587.3 566.0	124 182 242 360 480 598 716 952 1426 2120 2820 4152
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m 33 33 33 33 33 33 33 33 33 33 33 33 33	387.8 367.6 347.0 336.5 329.8 332.2 336.5 339.4 342.3 341.4 589.8 566.0 337.5	124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 5760 min Winter 7200 min Winter	53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m 33 33 33 33 33 33 33 33 33 33 33 33 33	387.8 367.6 347.0 336.5 329.8 332.2 336.5 339.4 342.3 341.4 589.8 566.0 337.5 304.9	124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472 6632
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m 33 33 33 33 33 33 33 33 33 33 33 33 33	387.8 367.6 347.0 336.5 329.8 332.2 336.5 339.4 342.3 341.4 589.8 566.0 337.5 304.9 277.1	124 182 242 360 480 598 716 952 1426 2120 2820 4152 5472 6632

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 7 Attenuation Basin	<u> </u>
Norfolk NR3 1AF	1:100 + CC	Micco
Date 12/09/2017	Designed by GS	Drainarre
File AREA 7.SRCX	Checked by BWA	Digitigh
XP Solutions	Source Control 2017.1.2	

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.000	Shortest Storm (mins) 15
Ratio R	0.416	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 1.860

Time (mins) Area From: To: (ha)

0 4 1.860

Create Consulting Engineers Ltd		Page 4						
15 Princes Street	Wisbech							
Norwich	Area 7 Attenuation Basin	4						
Norfolk NR3 1AF	1:100 + CC	Micco						
Date 12/09/2017	Designed by GS							
File AREA 7.SRCX	Checked by BWA	Drainage						
XP Solutions	Source Control 2017.1.2							
Minimum Outlet Pipe Dia Suggested Manhole Dia	meter (mm) 1200							
Control Po	ints Head (m) Flow (l/s)							
	llculated) 1.000 2.3 Tush-Flo™ 0.307 2.3							
	Kick-Flo® 0.625 1.9							
Mean Flow over H	lead Range - 2.0							
Hydro-Brake® Optimum as specified.	The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated							
		FIOW (1/3)						
0.100 1.9 1.200 0.200 2.2 1.400 0.300 2.3 1.600 0.400 2.3 1.800 0.500 2.2 2.000 0.600 2.0 2.200 0.800 2.1 2.400 1.000 2.3 2.600	2.53.0003.87.0002.73.5004.17.5002.94.0004.48.0003.04.5004.68.5003.25.0004.89.0003.35.5005.19.5003.46.0005.33.66.5005.55.5	6.2						
©1982-	2017 XP Solutions							

	gineers Lt						Page 1
15 Princes Street			bech				
Norwich		Area	a 8 At	tenuat	ion Ba	isin	1 L
Norfolk NR3 1AF		1:10) + C	CC			Micco
Date 12/09/2017		Des	igned	by GS			
File AREA 8.SRCX			-	y BWA			Draina
XP Solutions				ontrol	2017 1	2	
		500.		meror	2017.1	• 2	
Summary	f Posulte	for 1		or Poti	Irn Day	riod (+40%)
<u>summary c</u>	<u>I RESUILS</u>	101 1	<u>00 yea</u>	ai kett	ITII FEI	100 (+40%	<u>) </u>
	Storm	Max	Max	Max	Max	Status	
	Event			Control		blacab	
		(m)	(m)	(1/s)	(m ³)		
	min Summer			0.8		ОК	
) min Summer			0.8			
) min Summer) min Summer			0.8			
) min Summer			0.8			
) min Summer			0.8			
) min Summer			0.8			
) min Summer			0.9			
600) min Summer	2.253	0.753	0.9	489.3	ОК	
) min Summer			0.9			
) min Summer			0.9			
) min Summer			0.9			
) min Summer			0.9			
) min Summer) min Summer			0.9 0.9			
) min Summer			0.9			
) min Summer			0.9			
	min Summer			0.9			
10080) min Summer	2.262	0.762	0.9	495.6	ОК	
	min Winter			0.8	207.9	O K	
30) min Winter	1.917	0.417	0.8	271.1	ОК	
	Storm	Rain			-	ime-Peak	
	Storm Event	Rain (mm/hr)	Volum	ne Vol	ume	ime-Peak (mins)	
				ne Vol	-		
:		(mm/hr)	Volun (m³)	ne Vol	ume		
15	Event	(mm/hr)	Volun (m³)	ne Vol	ume 1 ³)	(mins)	
15 30 60	Event min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779	Volum (m ³) 0 0	ne Vol (m .0 .0	ume 1 ³) 70.2	(mins) 19	
15 30 60 120	Event min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379	Volum (m ³) 0 0 0	ne Vol .0 (m .0 .0 .0 .0 .0 .0	70.2 67.5 128.4 124.0	(mins) 19 34 64 124	
15 30 60 120 180	Event min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772	Volum (m ³) 0 0 0 0 0	ne Vol (m .0 .0 .0 .0	70.2 67.5 128.4 124.0 126.9	(mins) 19 34 64 124 184	
15 30 60 120 180 240	Event min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994	Volum (m ³) 0 0 0 0 0 0 0	ne Vol (m .0 .0 .0 .0 .0 .0	ume 70.2 67.5 128.4 124.0 126.9 130.3	(mins) 19 34 64 124 184 244	
15 30 60 120 180 240 360	Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738	Volum (m ³) 0 0 0 0 0 0 0 0 0 0	ne Vol (m .0 .0 .0 .0 .0 .0 .0	70.2 67.5 128.4 124.0 126.9 130.3 134.3	(mins) 19 34 64 124 184 244 364	
15 30 60 120 180 240 360 480	Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	70.2 67.5 128.4 124.0 126.9 130.3 134.3 136.9	(mins) 19 34 64 124 184 244 364 484	
15 30 60 120 180 240 360 480 600	Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	70.2 67.5 128.4 124.0 126.9 130.3 134.3	(mins) 19 34 64 124 184 244 364	
15 30 60 120 180 240 360 480 600 720	Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol .0 (m .0 .0 .0 .0 .0 .0 .0 .0	70.2 67.5 128.4 124.0 126.9 130.3 134.3 136.9 138.5	(mins) 19 34 64 124 184 244 364 484 604	
15 30 60 120 180 240 360 480 600 720 960	Event min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol (m .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	70.2 67.5 128.4 124.0 126.9 130.3 134.3 136.9 138.5 139.6	(mins) 19 34 64 124 184 244 364 484 604 724	
15 30 60 120 180 240 360 480 600 720 960 1440 2160	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol .0 (m .0 .0 .0 .0	70.2 67.5 128.4 124.0 126.9 130.3 134.3 136.9 138.5 139.6 140.5 139.7 281.1	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol .0 (m .0	70.2 67.5 128.4 124.0 126.9 130.3 134.3 136.9 138.5 139.6 140.5 139.7 281.1 279.4	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol .0 (m .0	70.2 67.5 128.4 124.0 126.9 130.3 134.3 136.9 138.5 139.6 140.5 139.7 281.1 279.4 269.1	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4280	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol .0 (m .0	70.2 67.5 128.4 124.0 126.9 130.3 134.3 136.9 138.5 139.6 140.5 139.7 281.1 279.4 269.1 527.0	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4280 4904	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol .0 (m .0	Tune 70.2 67.5 128.4 124.0 126.9 130.3 134.3 136.9 138.5 139.6 140.5 139.7 281.1 279.4 269.1 527.0 519.4	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4280 4280 4904 5688	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol .0 (m .0	Tune 70.2 67.5 128.4 124.0 126.9 130.3 134.3 136.9 138.5 139.6 140.5 139.7 281.1 279.4 269.1 527.0 519.4 507.1	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4280 4280 4904 5688 6400	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045 0.920	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol .0 (m .0	Tune 70.2 67.5 128.4 124.0 126.9 130.3 134.3 136.9 138.5 139.6 140.5 139.7 281.1 279.4 269.1 527.0 519.4	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4280 4280 4904 5688	
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	Event min Summer min Summer	(mm/hr) 132.402 86.432 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215 1.045 0.920	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Vol .0 (m .0	Tune 70.2 67.5 128.4 124.0 126.9 130.3 134.3 136.9 138.5 139.6 140.5 139.7 281.1 279.4 269.1 527.0 519.4 507.1 490.5	(mins) 19 34 64 124 184 244 364 484 604 724 962 1442 2160 2880 4280 4280 4904 5688 6400 7168	

15 Princes Stre		d						
	et	Wisk	bech					
orwich		Area	a 8 Att	enuat	ion Ba	isin		
Norfolk NR3 1A	F	1:10	1:100 + CC					
ate 12/09/2017		Desi	gned b	y GS				
File AREA 8.SRC	X	Chec	cked by	' BWA				
KP Solutions			ce Con		2017.1	.2		
Sum	mary of Results	for 10	00 year	: Retu	ırn Pei	ciod (+40		
	Storm	Max	Max	Max	Max	Status		
	Event	Level (m)	Depth Co (m)	ontrol (1/s)	Volume (m³)			
	60 min Winter	2.018	0.518	0.8	336.5	ОК		
	120 min Winter	2.120	0.620	0.8	403.3	O K		
	180 min Winter			0.8				
	240 min Winter				468.9			
	360 min Winter 480 min Winter			0.9	504.4 530.5			
	600 min Winter			0.9				
	720 min Winter				566.3			
	960 min Winter			1.0				
	1440 min Winter	2.453	0.953	1.0	619.4	O K		
	2160 min Winter				640.8			
	2880 min Winter				648.5			
	4320 min Winter 5760 min Winter				644.4 627.7			
	7200 min Winter				606.9			
	/ 200 main manoor				000.0			
	8640 min Winter	2.407	0.907		589.4	O K		
	8640 min Winter 10080 min Winter			1.0	589.4 571.5			
	10080 min Winter Storm	2.379 Rain	0.879 Flooded	1.0 0.9 d Disch	571.5 harge T	O K ime-Peak		
	10080 min Winter	2.379 Rain	0.879 Flooded Volume	1.0 0.9 d Disch vol	571.5 harge T	O K		
	10080 min Winter Storm	2.379 Rain	0.879 Flooded	1.0 0.9 d Disch	571.5 harge T	O K ime-Peak		
	10080 min Winter Storm Event 60 min Winter	2.379 Rain (mm/hr) 53.779	<pre>0.879 Flooded Volume (m³) 0.0</pre>	1.0 0.9 d Disch vol (m	571.5 narge T. ume ³) 124.9	OK ime-Peak (mins) 64		
	10080 min Winter Storm Event 60 min Winter 120 min Winter	Rain (mm/hr) 53.779 32.379	0.879 Flooded Volume (m ³) 0.0	1.0 0.9 d Disch vol (m 0 1 0 1	571.5 harge T ume 3) 124.9 128.5	0 K ime-Peak (mins) 64 124		
	10080 min Winter Storm Event 60 min Winter 120 min Winter 180 min Winter	2.379 Rain (mm/hr) 53.779 32.379 23.772	<pre>0.879 Flooded Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	1.0 0.9 d Disch vol (m 0 1 0 1 0 1	571.5 harge T. ume 3) 124.9 128.5 134.0	0 K ime-Peak (mins) 64 124 182		
	10080 min Winter Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter	2.379 Rain (mm/hr) 53.779 32.379 23.772 18.994	<pre>0.879 Flooded Volume (m³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(</pre>	1.0 0.9 d Disch vol (m 0 1 0 1 0 1 0 1	571.5 harge T. ume ³) 124.9 128.5 134.0 137.5	0 K ime-Peak (mins) 64 124 182 242		
	10080 min Winter Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	Rain (mm/hr) 53.779 32.379 23.772 18.994 13.738	<pre>Flooded Volume (m³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(</pre>	1.0 0.9 d Disch vol (m 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	571.5 harge T. ume ³) 124.9 128.5 134.0 137.5 141.6	0 K ime-Peak (mins) 64 124 182		
	10080 min Winter Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter	Rain (mm/hr) 53.779 32.379 23.772 18.994 13.738	<pre>Flooded Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	1.0 0.9 d Disch vol (m 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1	571.5 harge T. ume ³) 124.9 128.5 134.0 137.5	O K ime-Peak (mins) 64 124 182 242 360		
	10080 min Winter Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	Rain (mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(1.0 0.9 d Disch vol (m 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1	571.5 harge T. ume ³) 124.9 128.5 134.0 137.5 141.6 144.2	O K ime-Peak (mins) 64 124 182 242 360 478		
	10080 min Winter Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter	Rain (mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(1.0 0.9 d Disch vol (m 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1	571.5 harge T. ume ³) 124.9 128.5 134.0 137.5 141.6 144.2 145.8	O K ime-Peak (mins) 64 124 182 242 360 478 596		
	10080 min Winter Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter	Rain (mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(1.0 0.9 4 Disch 5 Vol 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	571.5 harge T. ume ³) 124.9 128.5 134.0 137.5 141.6 144.2 145.8 146.8 146.8 147.6 146.2	O K ime-Peak (mins) 64 124 182 242 360 478 596 716 952 1426		
	10080 min Winter Storm Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter	Rain (mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(1.0 0.9 d Disch vol (m 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	571.5 harge T. ume ³) 124.9 128.5 134.0 137.5 141.6 144.2 145.8 144.8 146.8 146.8 147.6 146.2 296.1	O K ime-Peak (mins) 64 124 182 242 360 478 596 716 952 1426 2120		
	10080 min Winter Storm Event 60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter	Rain (mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(1.0 0.9 d Disch vol (m 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	571.5 harge T. ume 3) 124.9 128.5 134.0 137.5 141.6 144.2 145.8 144.8 145.8 146.8 147.6 146.2 296.1 293.6	O K ime-Peak (mins) 64 124 182 242 360 478 596 716 952 1426 2120 2796		
	Storm Event 60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter	Rain (mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(1.0 0.9 d Disch vol (m 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	571.5 harge T. ume 3) 124.9 128.5 134.0 137.5 141.6 144.2 145.8 144.8 145.8 146.8 147.6 146.2 296.1 293.6 281.6	O K ime-Peak (mins) 64 124 182 242 360 478 596 716 952 1426 2120 2796 4148		
	10080 min Winter Storm Event 60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter	Rain (mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459	Flooded Volume (m ³) 0.(0.(0.(0.(0.(0.(0.(0.(0.(0.(1.0 0.9 d Disch vol (m 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	571.5 harge T. ume 3) 124.9 128.5 134.0 137.5 141.6 144.2 145.8 144.2 145.8 146.8 147.6 146.2 296.1 293.6 281.6 559.2	O K ime-Peak (mins) 64 124 182 242 360 478 596 716 952 1426 2120 2796		
	Storm Event 60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter	Rain (mm/hr) 53.779 32.379 23.772 18.994 13.738 10.928 9.143 7.900 6.269 4.519 3.253 2.574 1.848 1.459 1.215	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.0 0.9 d Disch vol (m 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	571.5 harge T. ume 3) 124.9 128.5 134.0 137.5 141.6 144.2 145.8 144.8 145.8 146.8 147.6 146.2 296.1 293.6 281.6	O K ime-Peak (mins) 64 124 182 242 360 478 596 716 952 1426 2120 2796 4148 5416		

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 8 Attenuation Basin	L.
Norfolk NR3 1AF	1:100 + CC	Micco
Date 12/09/2017	Designed by GS	Drainarre
File AREA 8.SRCX	Checked by BWA	Digiligh
XP Solutions	Source Control 2017.1.2	

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.000	Shortest Storm (mins) 15
Ratio R	0.416	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.750

Time	(mins)	Area
From:	To:	(ha)

0 4 0.750

Create Consulting Engineers Ltd		Page 4									
15 Princes Street	Wisbech										
Norwich	Area 8 Attenuation Basin	L.									
Norfolk NR3 1AF	1:100 + CC	Micro									
Date 12/09/2017	Designed by GS	Drainago									
File AREA 8.SRCX	Checked by BWA	Diamage									
XP Solutions	Source Control 2017.1.2										
	<u>Model Details</u>										
Storage is Online Cover Level (m) 2.500 Tank or Pond Structure											
	ert Level (m) 1.500										
	ea (m^2) Depth (m) Area (m^2)										
0.000	650.0 1.000 650.0										
Hvdro-Brake®	Optimum Outflow Control										
	Reference MD-SHE-0047-1000-1000-1000										
	m Head (m) 1.000										
_	Flow (1/s) 1.0										
	Flush-Flo™ Calculated Objective Minimise upstream storage										
P	pplication Surface										
1	Available Yes										
	meter (mm) 47 Level (m) 1.500										
Minimum Outlet Pipe Dia											
Suggested Manhole Dia	meter (mm) 1200										
Control Po	ints Head (m) Flow (l/s)										
	alculated) 1.000 1.0										
1	Flush-Flo™ 0.205 0.8										
Mean Flow over 1	Kick-Flo® 0.415 0.7 Head Range - 0.8										
	2										
Hydro-Brake® Optimum as specified.	peen based on the Head/Discharge relation Should another type of control device of an these storage routing calculations wi	ther than a									
Depth (m) Flow (1/s) Depth (m) Flow	w (l/s) Depth (m) Flow (l/s) Depth (m)	Flow (l/s)									
0.100 0.8 1.200 0.200 0.8 1.400	1.1 3.000 1.6 7.000 1.2 3.500 1.8 7.500	2.4									
0.200 0.8 1.400 0.300 0.8 1.600	1.2 3.500 1.8 7.500 1.2 4.000 1.9 8.000	2.5 2.6									
0.400 0.7 1.800	1.3 4.500 2.0 8.500	2.7									
0.500 0.7 2.000	1.4 5.000 2.1 9.000	2.7									
0.600 0.8 2.200 0.800 0.9 2.400	1.4 5.500 2.2 9.500 1.5 6.000 2.3 9.500	2.8									
1.000 1.0 2.600	1.5 6.500 2.3										
©1982-	-2017 XP Solutions										

Create Consulting End	gineers Lt	d					Page 1
15 Princes Street	<u></u>		bech				
Norwich		Ares	a 9 Att	onuat	ion Ba	asin	4
Norfolk NR3 1AF					LUII De	45111	
			00 + CC				-Micro
Date 12/09/2017			igned k	-			Drainaq
File AREA 9.SRCX		Cheo	cked by	7 BWA			Druiniuc
XP Solutions		Soui	rce Cor	ntrol	2017.1	1.2	
Summary o	of Results	for 1	<u>00 yea</u> :	r Retu	irn Pe	riod (+40%)	
	Storm	Max	Max	Max	Max	Status	
	Event		Depth C				
		(m)	(m)	(l/s)	(m³)		
15	5 min Summer	1.777	0.277	2.9	596.3	ОК	
) min Summer				777.3	O K	
60) min Summer	1.949	0.449	2.9	964.5	O K	
) min Summer				1155.5		
) min Summer				1266.8		
) min Summer				1343.9		
) min Summer) min Summer				1446.1 1521.3		
) min Summer) min Summer				1521.5		
) min Summer				1623.8		
960) min Summer	2.287	0.787	2.9	1691.8	O K	
1440) min Summer	2.326	0.826	2.9	1775.3	O K	
2160) min Summer	2.353	0.853	2.9	1834.6	O K	
) min Summer				1854.4		
) min Summer				1836.1		
) min Summer) min Summer				1784.2 1733.5		
) min Summer				1684.1		
) min Summer				1636.0		
15	ō min Winter	1.811	0.311	2.9	668.0	O K	
30) min Winter	1.905	0.405	2.9	870.9	O K	
	Storm	Rain	Floode	d Discl	harge T	ime-Peak	
	Event	(mm/hr)	Volume	vol	.ume	(mins)	
			(m³)	(m	1 ³)		
1 5	min Summer	132 102	0	0 4	244.0	19	
	min Summer	86.432			244.0 247.6	34	
	min Summer	53.779			492.6	64	
		32.379			479.7	124	
180	min Summer	23.772	0.	0 4	463.7	184	
	min Summer	18.994			446.7	244	
	min Summer	13.738			423.6	364	
	min Summer min Summer	10.928			411.7	484	
	min Summer min Summer	9.143 7.900			406.3 405.2	604 724	
	min Summer	6.269			403.2	962	
	min Summer	4.519			407.6	1442	
2160	min Summer	3.253	0.		823.2	2160	
2880	min Summer	2.574	0.	0 8	819.5	2880	
	min Summer	1.848			794.8	4320	
	min Summer	1.459			643.2	5248	
	min Summer	1.215			583.2	5912	
	min Summer min Summer	1.045 0.920			524.5 470.3	6664 7456	
TOUUU		0.920					
	min Winter	132,402	0.	0 1	24/.1	19	
15	min Winter min Winter	132.402 86.432			247.1 246.9	19 34	
15	min Winter	86.432		0 2	246.9		

eate Consulting Engineers Lt					
Princes Street	Wisk	bech			
rwich	Area	a 9 Atte	enuat	ion B	asin
rfolk NR3 1AF	1:10)0 + CC			
te 12/09/2017	Desi	igned by	v GS		
le AREA 9.SRCX		cked by	-		
2 Solutions		cce Cont		2017	1 0
5010010115	5001			2017.	1.2
Summary of Results	for 1	<u>00 year</u>	Retu	rn Pe	riod (+40
Storm	Max	Max	Max	Max	Status
Event	Level	Depth Co	ntrol	Volume	2
	(m)	(m) (1/s)	(m³)	
CO min Minter		0 5 0 0	2 0	1000	0 7
60 min Winte: 120 min Winte:				1080.9	
120 Min Winte 180 min Winte				1421.6	
240 min Winter				1508.4	
360 min Winter				1623.6	
480 min Winter				1708.9	
600 min Winter				1774.0	
720 min Winter				1826.2	
960 min Winter				1905.0	
1440 min Winter				2004.1	
2160 min Winter				2079.6	
2880 min Winter				2110.9	ОК
4320 min Winter	2.481	0.981	2.9	2109.3	ОК
5760 min Winter	2.461	0.961	2.9	2065.2	ОК
7200 min Winter	2.431	0.931	2.9	2001.3	ОК
8640 min Winter	2.401	0.901	2.9	1936.3	ОК
10080 min Winte:	2.3/4	0.074	2.9	1878.3	ОК
Storm	Rain			-	ime-Peak
Event	(mm/hr)	Volume			(mins)
		(m³)	(m	3)	
60 min Winter	53.779	0.0	4	188.4	64
120 min Winter				162.1	124
180 min Winter	23.772	0.0	4	135.6	182
240 min Winter 360 min Winter 480 min Winter	18.994	0.0	4	122.2	242
360 min Winter	13.738	0.0	4	114.1	360
				117.9	480
600 min Winter				123.2	598
720 min Winter				126.8	716
960 min Winter				130.2	952
1440 min Winter				128.9	1426
2160 min Winter	3.253	0.0		368.7	2120
2880 min Winter				365.1	2820
4320 min Winter	1.848	0.0	8	337.4	4152
5760 min Winter	1.459	0.0	16	581.3	
7200 min Winter	1.215	0.0	16	544.8	
8640 min Winter	1.045	0.0	τc	511.7	
10080 min Winter	0.920	0.0	15	68.8	7864

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Wisbech	
Norwich	Area 9 Attenuation Basin	<u> </u>
Norfolk NR3 1AF	1:100 + CC	Micco
Date 12/09/2017	Designed by GS	Drainarre
File AREA 9.SRCX	Checked by BWA	Dialiaye
XP Solutions	Source Control 2017.1.2	

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.000	Shortest Storm (mins) 15
Ratio R	0.416	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 2.410

Time (mins) Area From: To: (ha)

0 4 2.410

Create Consulting Engineers Ltd		Page 4									
15 Princes Street	Wisbech										
Norwich	Area 9 Attenuation Basin	4									
Norfolk NR3 1AF	1:100 + CC	Micco									
Date 12/09/2017	Designed by GS										
File AREA 9.SRCX	Checked by BWA	Drainage									
XP Solutions	Source Control 2017.1.2										
Medel Deteile											
<u>1</u>	<u>Model Details</u>										
Storage is Online Cover Level (m) 2.500											
Tank	or Pond Structure										
Inve	rt Level (m) 1.500										
Depth (m) Are	ea (m²) Depth (m) Area (m²)										
0.000	2150.0 1.000 2150.0										
<u>Hydro-Brake®</u>	Optimum Outflow Control										
Unit	Reference MD-SHE-0081-2900-1000-2900										
-	n Head (m) 1.000										
_	Flow (1/s) 2.9 Flush-Flo™ Calculated										
	Objective Minimise upstream storage										
	pplication Surface										
-	AvailableYesmeter (mm)81										
	Level (m) 1.500										
Minimum Outlet Pipe Dia											
Suggested Manhole Dia	meter (mm) 1200										
Control Po	ints Head (m) Flow (l/s)										
	alculated) 1.000 2.9										
I	Flush-Flo™ 0.299 2.9										
Mean Flow over H	Kick-Flo® 0.623 2.3 Head Range - 2.5										
Hydro-Brake® Optimum as specified.	een based on the Head/Discharge relation Should another type of control device o en these storage routing calculations wi	ther than a									
Depth (m) Flow (1/s) Depth (m) Flow	w (l/s) Depth (m) Flow (l/s) Depth (m)	Flow (l/s)									
0.100 2.4 1.200	3.2 3.000 4.8 7.000	7.2									
0.200 2.8 1.400 0.300 2.9 1.600	3.4 3.500 5.2 7.500 3.6 4.000 5.5 8.000	7.4 7.7									
0.300 2.9 1.800	3.6 4.000 5.5 8.000 3.8 4.500 5.8 8.500	7.9									
0.500 2.7 2.000	4.0 5.000 6.1 9.000	8.1									
0.600 2.4 2.200	4.2 5.500 6.4 9.500	8.3									
0.800 2.6 2.400 1.000 2.9 2.600	4.3 6.000 6.7 4.5 6.500 6.9										
1.000 2.9 2.000											
	-2017 XP Solutions										

APPENDIX D

Graham Sinclair

From: Sent:	Jhrujh#Gdqq#/JhrujhCzopdlrujlxnA 44#/xd #534:#9=45
То:	Julkdp #/lqfallu
Cc:	J duhwk#P duwlq
Subject:	UH#Hdw#Z lvehfk#EFS#qfhswirq#P hhwiqj#D#Vxuidfh#Z dwhu#Gudlqdjh#Jhsru#D#:0#
	3:04:
Attachments:	X qwlwdng Ysgi

Graham

Please find attached plan with approximate downstream, midpoint and upstream bed levels for the Boardmaintained watercourses crossing/adjacent to the BCP site. You will note that there are significant variations in both the levels and gradients of these drains, with many of them having little or no scope for lowering the bed levels without large-scale, expensive improvement schemes being undertaken downstream.

If you wish to discuss issues around potential outfalls further in due course, please let me know.

Kind regards

George Dann Planning Officer, King's Lynn Drainage Board **e:** <u>george@wlma.org.uk</u>

Water Management Alliance Kettlewell House, Austin Fields Industrial Estate, King's Lynn, Norfolk, <u>PE30 1PH</u>, UK t: +44 (0)1553 819600 | f: +44 (0)1553 819639 | e: info@wlma.org.uk | www.wlma.org.uk

Consisting of:

Broads Drainage Board, East Suffolk Drainage Board, King's Lynn Drainage Board, Norfolk Rivers Drainage Board and South Holland Drainage Board in association with Pevensey & Cuckmere Water Level Management Board

Defenders of the Lowland Environment

The information in this e-mail, and any attachments, is confidential and intended solely for the use of the individual or entity to whom it is addressed. The views expressed in this e-mail may not represent those of the Board(s). Nothing in this email message amounts to a contractual or legal commitment unless confirmed by a signed communication. All inbound and outbound emails may be monitored and recorded.

All inbound and outbound e-mails may be monitored and recorded. We may have to make this message and any reply to it public if asked to under the Freedom of Information Act, Data Protection Act or for any litigation. E-mail messages and attachments sent to or from the Water Management Alliance e-mail address may also be accessed by someone other than the sender or recipient, for business purposes.

With our commitment to ISO 14001, please consider the environment before printing this e-mail.

From: Graham Sinclair [mailto:Graham.Sinclair@createconsultingengineers.co.uk] Sent: 07 July 2017 16:47

To: 'Gareth Martin' <gmartin@fenland.gov.uk>; 'Wendy Otter' <wotter@fenland.gov.uk>; 'Peter Jermany' <Peter.Jermany@West-Norfolk.gov.uk>; George Dann <George@wlma.org.uk> Subject: RE: East Wisbech BCP Inception Meeting - Surface Water Drainage Report - 7- 07-17

Hi All,

It was good to meet with you this morning. As discussed if you could send through the following information when available it would be greatly appreciated.

Gareth/Wendy/Peter:

- Preliminary highways access/layout plans;
- High accuracy LiDAR data if it can be obtained free of charge;
- Land ownership plan; and,
- Any ecology/landscaping information as and when it is forthcoming.

George:

- Any level information you may have for the board controlled drains within the site boundary (I will submit a data request for the GIS layers of the IDB watercourses early next week).

If any of the above could be sent through in CAD/GIS format that would be brilliant, however PDF is no problem if this is not possible.

Many thanks,

Graham.

Graham Sinclair Principal Consultant – Flood Risk and Hydrology Create Consulting Engineers Ltd 15 Princes Street | Norwich | NR3 1AF T 01603 877 010

From: Gareth Martin [mailto:gmartin@fenland.gov.uk]
Sent: 05 July 2017 12:02
To: Wendy Otter <<u>wotter@fenland.gov.uk</u>>; Peter Jermany <<u>Peter.Jermany@West-Norfolk.gov.uk</u>>; George Dann
<<u>George@wlma.org.uk</u>>; Graham Sinclair <<u>Graham.Sinclair@createconsultingengineers.co.uk</u>>
Subject: East Wisbech BCP Inception Meeting - Surface Water Drainage Report - 7- 07-17

Hi all,

Please find attached a draft Agenda for Friday's meeting.

The headings will provide the basis for discussion and if you think other matters need to be added now please let me know, although we can discuss on Friday anyway.

Refreshments will be provided. Look forward to seeing you all on Friday.

Kind regards,

Gareth

DD: 01354 622439

E-mails and any attachments from Fenland District Council the Council are confidential. If you are not the intended recipient, please notify the sender immediately by replying to the e-mail, and then delete it without making copies or using it in any other way or placing any reliance on it.

It is not intended that this e-mail shall constitute either an offer or acceptance nor is it intended to form a contract between the Council and the addressee or any third party.

Any views or opinions presented are solely those of the sender and do not necessarily represent those of the Council unless otherwise specifically stated.

Although any attachments to the message will have been checked for viruses before transmission, you are urged to carry out your own virus check before opening attachments, since the Council accepts no responsibility for loss or damage caused by software viruses.

Senders and recipients of e-mail should be aware that, under the Data Protection Act 1998, the Freedom of Information Act 2000, the Environmental Information Regulations 2004 and other related legislation, the contents of e-mails may have to be disclosed in response to a request.

Data Protection Act 1998

To provide you with our services we will need to record personal information, such as your e-mail address. This information will be kept securely and only accessed by approved staff. We will not share your information with anyone else without first telling you. If you would like more details about how we protect personal information then please contact our Data Protection Officer.

Fenland District Council Legal Disclaimer

This e-mail has been scanned for viruses

This email and any files transmitted with it are intended solely for the use of the individual to whom they are addressed. If you have received this email in error then please notify the sender. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of Create Consulting Engineers Ltd.

Although the company has taken all reasonable precautions to ensure no viruses are present in this email, Create Consulting Engineers Ltd cannot accept responsibility for any loss of damage arising from the use of this email or attachments.

Create Consulting Engineers is a registered company in England and Wales Number 6830694 Registered Office: 25 Church Close, South Walsham, Norwich, NR13 6DW

This email and any files transmitted with it are intended solely for the use of the individual to whom they are addressed. If you have received this email in

error then please notify the sender. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of Create Consulting Engineers Ltd.

Although the company has taken all reasonable precautions to ensure no viruses are present in this email, Create Consulting Engineers Ltd cannot accept responsibility for any loss of damage arising from the use of this email or attachments.

Create Consulting Engineers is a registered company in England and Wales Number 6830694 Registered Office: 25 Church Close, South Walsham, Norwich, NR13 6DW

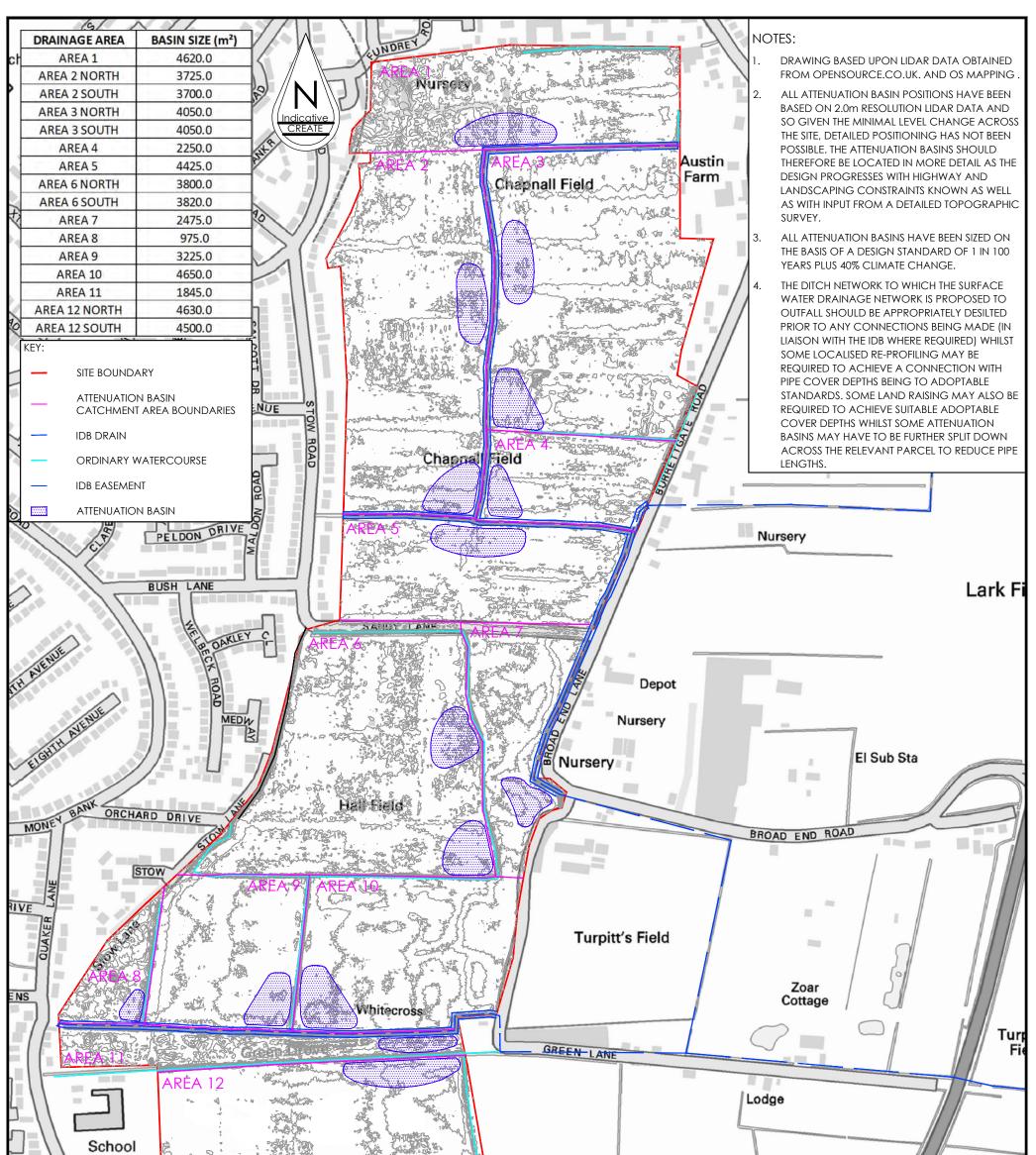
Scanned by **MailMarshal** - M86 Security's comprehensive email content security solution. Download a free evaluation of MailMarshal at <u>www.m86security.com</u>

This email and any files transmitted with it are intended solely for the use of the individual to whom they are addressed. If you have received this email in error then please notify the sender. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of Create Consulting Engineers Ltd.

Although the company has taken all reasonable precautions to ensure no viruses are present in this email, Create Consulting Engineers Ltd cannot accept responsibility for any loss of damage arising from the use of this email or attachments.

Create Consulting Engineers is a registered company in England and Wales Number 6830694 Registered Office: 25 Church Close, South Walsham, Norwich, NR13 6DW

- A -0.20m
- B +0.35m
- C +0.50m
- D +0.20m


This map is reproduced from Ordnance Survey material with the permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationery Office © Crown copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution or civil proceedings.

[2017].

F	+0.70m	Licence number 100052639,
		Licence number 100032639,
F	+1.00m	
G	-0.10m	
н	-0.05m	

- I +0.00m
- J +0.10m
- K +0.70m
- L +1.10m
- M +0.90m
- N +0.90m
- 0 +1.10m

PLANS

Agricultural College					
	g Engineers accept no responsibility for nly figured dimensions are to be worke	r any unauthorised amendments ed to. COPYRIGHT © RESERVED	PROJECT EAST WISBECH, NORFOLK DRAWING TITLE INDICATIVE ATTENUATION BASIN SIZES & POSITIONS	In copyright and database rights 20)
	A 16.11.17 UPDATED FOLLOWING CUENT REVIEW REV DATE AMENDMENT DETAILS		FENLAND DISTRICT COUNCIL	DRAWING NO 02/001 A Create CONSULTING ENGINEERS LTC	