Fenland District Council Cambridgeshire County Council March Area Transport Study

Local Model Validation Report 11 March 2011 **NTKINS**

Plan Design Enable

Notice

This document and its contents have been prepared and are intended solely for Cambridgeshire County Council's and Fenland District Council's information and use in relation to the March Area Transport Study.

Atkins Transport Planning assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

Document History

JOB NUMBER: 5097866		DOCUMENT REF: MATS_LMVR_V2.Docx				
Revision Purpose Description Originated		Checked	Reviewed	Authorised	Date	
0.1	Draft – for internal review	KT/SA				Jan 11
1.0	Draft – issued to CCC/FDC for comments	KT/SA	JL	PE	PE	Feb 11
2.0	Updated in response to CCC/FDC comments	SA	NP	PE	PE	Mar 11
		Gr. John	NERice	1039	1039	
		a que	01			

March Area Transport Study

The market town of March is the second largest settlement in Fenland District. The aim of the March Area Transport Study is to build and interpret a transport model that can provide forecasts for the future land use planning March and its surrounding area.

This document is the Local Model Validation Report.

Table of contents

Chapter

Chapter	pages
Glossary of Abbreviations Used in this Report	7
Glossary of Technical Terms	8
1. Introduction	9
Background	10
Scope and Structure of this Report	10
2. Overview of Modelling Framework WebTAG The Study Area MATS Zones and Sectors Modelling Software Modelled Base Year and Time Periods	11 12 12 12 12 12 13
 3. Data Sources Roadside Interview Survey Data Traffic Count Data Journey Time Survey Data Queue Length Survey Data Level Crossing Survey Data CCC Education Trip Data 2001 Journey to Work National Census Data Highway Network Inventory TrafficMaster Data Bus Route and Timetable Information Signal Timing Data 	17 20 20 20 20 20 20 20 20 21 21 21 21
 Highway Model – General Parameters SATURN Version and Parameters Passenger Car Unit Factors Modelled Base Year and Time Periods User Classes Time and Distance Costs 	22 23 23 23 23 24 24
5. Highway Model – Network Development	34
Network Coverage	35
Network Coding	35
6. Model Development – Matrix Development	42
Building the Observed Matrices	43
Building the Synthetic Matrices	50
Compiling the Full Prior Matrices	56
 Highway Model – Calibration and Validation Procedures Data Utilised Calibration Counts and Matrix Estimation Assignment Parameters Model Convergence Guidelines Calibration Procedure Model Validation 	59 60 61 62 62 63

8. ŀ	lighway Model – Calibration and Validation Results	68
Prior As	ssignment Summary	69
Post M	E2 Assignment Summary	69
Prior ar	nd Post ME2 Matrix Comparisons	78
9. 0	Conclusions	83
Results	Summary	84
Suitabil	ity of the MATS Base Model	84

5

Tables

Table 2.1 – MATS Sectors	12
Table 4.1 – 2002 Values of Working Time per Person (2002 prices, $\pounds/hour)$	24
Table 4.2 – 2002 Values of Non-Working Time per Person (2002 prices £/hour)	25
Table 4.2 Vehicle Occuration from the final driver	25
Table 4.5 – Venice Occupancy per ring (including driver)	20
Table 4.4 – Proportion of Venicles Travelling for Each Purpose (2010)	26
Table 4.5 – Proportion of Vehicle Types in Each User Class (2010)	26
Table 4.6 – 2002 Perceived Values of Time per Vehicle (2002 prices, £/hour)	27
Table 4.7 – Forecast Growth in the Working and Non-Working Values of Time	27
Table 4.8 – 2010 Perceived Values of Time per Vehicle (2002 prices f /hour)	28
Table 4.9 – 2010 Values of Time (PPM) Lead in the Base Year MATS SATI [RN Models (2002 prices)	28
Table 4.10 2002 Evel V/CC Earnulae Parameter Values (2002 prices litrac/kilemetre)	20
Table 4.10 – 2002 Fuel Consumming Values (2002 prices, files/kilometre)	29
Table 4.11 – 2002 Fuel Consumption Values (2002 prices, litres/kilometre)	29
Table 4.12 – Vehicle Fuel Efficiency Improvements	30
Table 4.13 – 2010 Fuel Consumption Values (litres/kilometre)	30
Table 4.14 – 2010 Fuel Costs (2002 prices, pence/litre)	30
Table 4.15 – 2010 Fuel Element of VOC (2002 prices, pence/kilometre)	31
Table 4 16 – Non-Fuel Element Formula Parameter Values	31
Table 4.17 – Non-Euel Element of VOC (2002 prices, pence/kilometre)	32
Table 4.19 Tatal VOC for Each Vobiale Catagory (2002 prices, paper/kilometro)	20
Table 4.10 – Total VOC of Each Venicle Category (2002 prices, perice/kilometre)	32
Table 4.19 – 2010 Venicle Operating Costs (PPK) Used in the Base Year MATS SATURN Models (2002	
prices)	32
Table 4.20 – AM Peak PPM and PPK Parameters	33
Table 4.21 – Inter Peak PPM and PPK Parameters	33
Table 4.22 – PM Peak PPM and PPK Parameters	33
Table 5.1 – Speed Flow Curve Classification	40
Table 6.1 – RSI Origin/Destination Purpose Definitions	44
Table 6.2 – Conversion to Trip Purposes	44
Table 6.3 – Sources of Non-Interview Direction Matrices	45
Table 6.4 – Traffic Count Survey Dates	47
Table 6.5 – Matrix Totals (Full Observed)	48
Table 6.6 – 2001 to 2010 Eactor (March Annual Town Monitoring Report)	50
Table 6.7 – Proportion of ITW and WTH Trips	50
Table 6.8 – Other Lleer Class as Propertien of HBW/	51
Table 0.0 – Other other of Library as in topolition of history Library Trips	51
Table 6.9 – Proportion of Home to School and School to Home Trips	53
Table 6.10 – Matrix Totals (Full Synthetic)	54
Table 6.11 – Matrix Totals (Prior)	56
Table 6.12 – Sector to Sector Analysis: Proportion of Observed Data (AM)	57
Table 6.13 – Sector to Sector Analysis: Proportion of Observed Data (IP)	57
Table 6.14 – Sector to Sector Analysis: Proportion of Observed Data (PM)	57
Table 6.15 – Select Link Analysis	58
Table 7.1 – MATS Calibration Counts	60
Table 7.2 – DMBB Assignment Acceptability Guidelines	63
Table 7.3 – MATS Validation Counts	64
Table 7.4 – Number of Journey Times Lised	66
Table 7.5 – Number of Journey Times Used – Additional Black Boute	66
Table 7.5 – Number of southey times Osed – Auditional Diack Houte	70
Table 9.2 AM Deak Count Validation Summary	70
Table 0.2 – Aivi Feak Coulit Validation Summary	70
Table 8.3 – Inter Peak Final Assignment Screenline and Cordon Summary	/0
Table 8.4 – Inter Peak Count Validation Summary	/1
Table 8.5 – PM Peak Final Assignment Screenline and Cordon Summary	/1
Table 8.6 – PM Peak Count Validation Summary	71
Table 8.7 – Alvi Peak Final Assignment Journey Time Summary	/5

Table 8.8 – Inter Peak Final Assignment Journey Time Summary	76
Table 8.9 – PM Peak Final Assignment Journey Time Summary	77
Table 8.10 – Prior and Post ME2 Matrix Total Comparison	78
Table 8.11 – Prior and Post ME2 Sector Matrix Difference (AM)	79
Table 8.12 – Prior and Post ME2 Sector Matrix Difference (IP)	79
Table 8.13 – Prior and Post ME2 Sector Matrix Difference (PM)	79
Table 8.14 – AM Peak Model Convergence Criteria	81
Table 8.15 – Inter Peak Model Convergence Criteria	81
Table 8.16 – PM Peak Model Convergence Criteria	82

Figures

Figure 2.1 – MATS Network/Study Area	13
Figure 2.2 – MATS Zone Plan (Overview)	14
Figure 2.3 – MATS Zone Plan (March)	15
Figure 2.4 – MATS Sector System	16
Figure 3.1 – All Count Data	19
Figure 5.1 – Urban Zone Connecting Stubs	36
Figure 5.2 – Link Speeds	37
Figure 5.3 – Percentage Difference between Coded and Crow-Fly Link Distances	38
Figure 5.4 – Types of Junctions	39
Figure 5.5 – Links with Speed Flow Curves	41
Figure 6.1 – Observed Matrix Building Process	49
Figure 6.2 – Calibration of the Logit Function for AM Peak UC1 (HBW)	52
Figure 6.3 – Synthetic Matrix Build Process	55
Figure 7.1 – MATS Screenline, Calibration and Validation Count Locations	65
Figure 7.2 – Red Route NB AM Peak Hour Journey Time Including Anomalous Data	67
Figure 7.3 – Red Route NB AM Peak Hour Journey Time with Anomalous Data Removed	67
Figure 8.1 – Count Calibration/Validation Overview (AM)	72
Figure 8.2 – Count Calibration/Validation Overview (IP)	73
Figure 8.3 – Count Calibration/Validation Overview (PM)	74
Figure 8.4 – AM Peak Final Assignment Journey Time Summary	75
Figure 8.5 – Inter Peak Final Assignment Journey Time Summary	76
Figure 8.6 – PM Peak Final Assignment Journey Time Summary	77
Figure 8.7 – AM Peak Trip Length Distribution Changes	80
Figure 8.8 – Inter Peak Trip Length Distribution Changes	80
Figure 8.9 – PM Peak Trip Length Distribution Changes	81

Appendix

A. Detailed Validation Results	85
AM Peak Hour	86
Inter Peak	108
PM Peak	129
B. MATS Network and Sector System	150
MATS Network	151
MATS Sector System	153

Glossary of Abbreviations Used in this Report

Automatic Traffic Count	ATC
Cambridgeshire County Council	CCC
COst Benefit Analysis	COBA
Department for Transport	DfT
Design Manual for Roads and Bridges	DMRB
Employers' Business	EB
Fenland District Council	FDC
Home-Based Education	HBEd
Home-Based Work	HBW
Inter Peak	IP
Geoffrey E Havers	GEH
Graphical Information System	GIS
Journey To Work	JTW
Light Goods Vehicle	LGV
Local Model Validation Report	LMVR
March Area Transport Study	MATS
Manual Classified Count	MCC
Manual Classified Turning Count	MCTC
Matrix Estimation by Maximum Entropy	ME2
Ordnance Survey	OS
Ordnance Survey Grid Reference	OSGR
Origin Based Assignment	OBA
Other Goods Vehicle Class 1 (Medium Goods Vehicle)	OGV1
Other Goods Vehicle Class 2 (Heavy Goods Vehicle)	OGV2
Other Trip Purpose	OTP
Passenger Car Unit	PCU
Pence per Kilometre	PPK
Pence per Minute	PPM
Roadside Interview	RSI
Simulation and Assignment of Traffic in Urban Road Networks	SATURN
User Class	UC
Value of Time	VOT
Vehicle Operating Cost	VOC
Vehicle Per Hour	vph
Web Transport Analysis Guidance	WebTAG
Wisbech Area Transport Study	WATS
Work To Home	WTH

Glossary of Technical Terms

- Furness Process This is a process used to distribute trips within a matrix. Given a starting point (often a logit distribution function) and a set of target trip ends, the Furness process distributes the trips so that the matrix origin and destination totals match the target trip ends.
- ME2 (Matrix Estimation from Maximum Entropy) This is a process that is used to estimate trip matrices from traffic counts such that the modelled link flows match the observed data more closely. This allows for errors within the matrix building process and the inherent inaccuracy of synthetic data, allowing the output assignment to match local conditions more accurately.
- SATASS/SATSIM (assignment) Loop (assignment) Loo
- SATME2 This is a program that is used in conjunction with SATPIJA to estimate trip matrices from observed traffic counts (SATURN 77777 Card). It is based on the modelling procedure ME2.

SATME2 essentially tries to improve the fit between modelled and observed flows by selectively factoring individual cells of the input trip matrix (prior).

- SATPIJA This program is run as part of the Matrix Estimation process, and produces a file that contains the proportion of trips between each origin and destination that uses the counted link.
- SATURN 77777 The 77777 card is the section of the network file which includes the observed traffic counts that are used within the Matrix Estimation element of the network calibration.
- Select Link Analysis An analysis procedure within SATURN that provides origin/destination information for all trips along a selected link. This is useful for understanding the type of trips (e.g. local or external) that uses a specific link and for demonstrating the traffic patterns on specific links within the network.
- Wardrop EquilibriumThe assignment procedure used within SATURN for this model. Traffic
arranges itself in congested networks such that:
 - no individual trip maker can reduce his/her path costs by switching routes;
 - the costs of travel on all used routes between each origin/destination pair have equal and minimum costs while all unused routes have greater or equal costs.

1. Introduction

This document is the Local Model Validation Report. It represents the culmination of the base year MATS SATURN highway model development, and hence is the basis for future modelling work in March.

Introduction

Background

- 1.1. Atkins Transport Planning was commissioned by Cambridgeshire County Council (CCC) and Fenland District Council (FDC) in July 2010 to undertake a transport study and produce a transport model for the market town of March.
- 1.2. The March Area Transport Study (MATS) sets out to review existing transport problems and issues and will examine a range of proposed measures and policies to improve the current transport system as well as meet the demand expected from future growth in the study area.
- 1.3. The MATS SATURN highway model has been validated to represent existing traffic conditions, and it forms the basis for future modelling work in March.

Scope and Structure of this Report

- 1.4. This document is the Local Model Validation Report (LMVR) and it provides details on the development of the base year MATS SATURN highway model. It outlines the methodology and traffic data used to develop the model network and demand matrices, and provides detailed model calibration and validation statistics.
- 1.5. The report is arranged in nine chapters and two appendices, following this introduction:
 - Chapter 2 gives an overview of the modelling framework;
 - Chapter 3 describes all of the data that was used during the development and validation of the model;
 - Chapter 4 details the general parameters that were used within the model;
 - Chapter 5 sets out the development of the model network;
 - Chapter 6 describes the development of the model demand matrices;
 - Chapter 7 describes the model calibration and validation procedures;
 - Chapter 8 provides the model calibration and validation results;
 - Chapter 9 draws together the conclusions of the model calibration and validation exercise;
 - Appendix A gives detailed tables and graphs of the validation results; and
 - Appendix B includes network and sector plots of the model.

2. Overview of Modelling Framework

This chapter provides information on coverage of the MATS SATURN highway model and the zoning and sectoring systems.

Overview of Modelling Framework

WebTAG

The MATS model has been built following the Web Transport Analysis Guidance (WebTAG). 2.1. This is the web-based guidance set out by the Department for Transport (DfT) on how to conduct transport studies, and provides guidance on how to conduct modelling and appraisal for highway and public transport schemes.

The Study Area

- 2.2. The study area comprises the market town of March, the principal roads of A141, B1101 and B1099. The study area extends to the A141/A605 junction in the north and the A141/A1093 junction in the south.
- 2.3. The extent of the study area is shown in Figure 2.1. The blue links in Figure 2.1, which are the simulation links, highlight the study area. A larger version of Figure 2.1 can also be found in Appendix B which provides a more detailed network structure for March.

MATS Zones and Sectors

- A zone plan for this study has been devised to give a fine level of detail in March, growing 2.4. coarser further away from the town, ultimately covering the whole of England, Scotland and Wales in 87 zones. Zone boundaries are based on existing divisions such as output area, ward, parish district and county boundaries. On several occasions, however, it was necessary to split an output area to reflect physical barriers such as the river, in accordance with DfT guidance on zone designation. The resulting zone plan is shown in Figure 2.2 and Figure 2.3.
- 2.5. The zone plan has been aggregated into eight sectors. The sectoring system is used as a means of keeping track of the basic movements around the model, and for basic trip distribution checks within the model. Table 2.1 lists the sectors and the number of zones within each sector. and Figure 2.4 shows the sector plan.

Sector ID	Description	Number of Zones
1	March North	13
2	March East	19
3	March West	17
4	Fenland North	10
5	Fenland East	2
6	Fenland South	7
7	Rest of Cambridgeshire and Peterborough	8
8	Rest of Country	11
Total		87

Table 2.1 – MATS Sectors

Modelling Software

2.6.

The MATS highway model was built and run using the SATURN software suite (Simulation and Assignment of Traffic to Urban Road Networks), version 10.9.17.

Modelled Base Year and Time Periods

2.7. The base year for the MATS SATURN highway model is 2010. Three time periods have been modelled:

- AM peak (0800-0900);
- Inter peak (Average hour between 1000-1600); and
- PM peak (1700-1800).

Figure 2.1 – MATS Network/Study Area

14

Figure 2.4 – MATS Sector System

See Appendix B for a larger figure of the MATS Sector System.

A variety of traffic data was identified and collected to enable the most accurate understanding of the trip pattern in and around the MATS study area.

Data Sources

- 3.1. A variety of traffic data have been identified and collected to provide information on the traffic movements in and around March. Existing data including CCC's annual town monitoring traffic survey data have been collated and processed, whilst additional data including roadside interview (RSI) data and manual classified turning counts (MCTCs) were collected to complement the available traffic datasets.
- 3.2. A complete list of the data that has been collected is presented below; further discussion on the use of the data can be found in the rest of this report. Full details of the surveys and a summary of data have been presented in the MATS Data Collection Report.
 - RSI survey data (with associated manual classified count (MCC) and automatic traffic count (ATC) survey data);
 - MCTC survey data for key junctions within the study area;
 - CCC's annual town monitoring traffic survey data which provides MCC data for the local road network;
 - Journey time survey data;
 - Queue length survey data
 - Level crossing survey data;
 - Traffic signal data;
 - Bus route and timetable information;
 - Highway network inventory;
 - 2001 Journey to Work (JTW) National Census data;
 - CCC education trip data; and
 - TrafficMaster data.
- 3.3. Figure 3.1 shows the locations of the traffic count surveys. It should be noted that Site R-4 was originally identified as a RSI site, however a suitable and safe stretch of the A141 for the RSI site was not available and the RSI could not be undertaken. Only the MCC survey and the two-week continuous ATC survey were undertaken for this site.

Roadside Interview Survey Data

- 3.4. Five RSI surveys, including Site R-6 postcard site, were undertaken in October 2010. These surveys provide 12-hour origin/destination interview data, along with bi-direction MCC data on the survey day. Two-week bi-directional ATC data were also collected at each RSI site to provide continuous traffic flow profile.
- 3.5. This data enables interview direction and (by transposition) non-interview direction demand matrices to be compiled for all RSI sites.

Traffic Count Data

3.6. 25 junctions in and around March were selected for MCTC surveys; and CCC's annual town monitoring surveys provides MCC data for 11 road links within the MATS study area. This traffic count data does not directly form part of the demand matrices, but it is used in the calibration and validation stages of the model building.

Journey Time Survey Data

3.7. Journey time surveys for four routes were carried out across the study area. The detailed journey time data is key to understanding present conditions and is integral to the development and validation of the highway model.

Queue Length Survey Data

3.8. The queue length data was undertaken for seven key junctions within the study area. The data is used in the model calibration stage to ensure junction delay within the model is representative.

Level Crossing Survey Data

3.9. The duration of level crossing barrier closures, the queue length on the approaches to the barrier and MCC data for the March Station Road level crossing were collected to allow the impact of the level crossing on the highway network to be modelled accurately. The level crossing barrier closure duration data is used in the network coding stage, whilst the queue length and MCC data is used in the model calibration and validation stages.

CCC Education Trip Data

- 3.10. 2010 education trip data was provided by CCC, which gives journey to school data for all state funded primary and secondary schools in Cambridgeshire. Eight schools have been identified within the study area; seven of which are primary schools, and one is secondary school. All movements to the schools in March have been isolated and kept as well as movements for pupils who live in March but go to school elsewhere.
- 3.11. The education trip data is provided by mode, and all car trips have been extracted for the highway model. The education trip data has been used to estimate the internal trip movements within March, alongside the synthetic demand data.

2001 Journey to Work National Census Data

3.12. An origin/destination matrix based on the 2001 JTW Census data was produced to assist the infilling of the traffic movements that are not, fully or partially, captured by the RSI (e.g. internal movements within March).

- 3.13. A database of the JTW trips between all output areas within England and Wales by mode from the 2001 Census has been made available for this study. The bullet points below list the modes that are included in the 2001 Census database. For the MATS JTW Census matrix, car driver trips were taken as equivalent to vehicle trips, and were the only mode from the JTW Census Data that was used.
 - Work From Home;
 - Underground;
 - Train;
 - Bus;
 - Taxi;
 - Car Driver;
 - Car Passenger;
 - Motorcycle;
 - Pedal Cycle;
 - Walk; and
 - Other.
- 3.14. Graphical Information System (GIS) software (MapInfo) was used to identify the 2001 Census zones, known as output areas, which are within each individual MATS model zones, and a correspondence list between the MATS zones and output areas were produced.
- 3.15. By setting up Microsoft Access Queries with the 2001 Census data and the zone correspondence list produced from MapInfo, a 2001 JTW Census matrix based on the MATS zone plan was generated.
- 3.16. This JTW Census matrix is one of the basic inputs for the matrix building process (synthetic component) and is discussed in detail in Chapter 6.

Highway Network Inventory

- 3.17. Highway network information, such as the road structure and junction layouts, was collected from different sources, such as Ordnance Survey (OS) mapping, aerial and street-view photography. This information forms the basis for the SATURN highway network coding.
- 3.18. Other network attributes, such as weight restrictions and traffic calming measures, were also collected from existing data sources (e.g. CCC website) and site visits. The impacts of these attributes were considered during the network calibration stage and incorporated into the model where appropriate.

TrafficMaster Data

3.19. The TrafficMaster data provides observed speed data for September 2008 to July 2009 for the AM and PM peaks, covering the urban area of March and the main approach routes to March, consistent with the traffic model coverage. This data was used to assist the calibration and validation of the model, and ensuring the modelled link speeds are representative.

Bus Route and Timetable Information

3.20. Bus route and timetable information was downloaded from the CCC website and relevant bus operators' website. The bus routes and service frequencies (i.e. buses per hour), calculated from the timetables, were coded into the model.

Signal Timing Data

3.21. Signal staging, phasing and timing data was obtained from CCC to allow the accurate representation of all signalised junctions (including pedestrian crossings) within the model.

4. Highway Model – General Parameters

This chapter outlines the general model parameters, including PCU factors and time and distance costs, used.

Highway Model – General Parameters

4.1. This chapter gives all the general parameters that have been used throughout the MATS SATURN highway model, including a detailed derivation of the time and distance costs.

SATURN Version and Parameters

- 4.2. Version 10.9.17 of SATURN software suite has been used for the MATS highway modelling. The Origin Based Assignment (OBA) procedure has been utilised, with stringent convergence criteria based Flow Change Stability.
- 4.3. Flow Change Stability 'P' is the measure of convergence of assignment simulation loops. It is the percentage of links where assigned flows change by less than 5% between successive assignment simulation loops. Design Manual for Roads and Bridges (DMRB) (Volume 12 Section 2 Part 1 Traffic Appraisal in Urban Areas) states that assignment model iterations should continue until at least four successive values of 'P' in excess of 90% have been obtained.
- 4.4. For the MATS model, more stringent convergence criteria than the DMRB guidance have been used. Emerging guidance from the SATURN developers suggest that a more stringent convergence of the Flow Change Stability would be advantageous, with a 'P' value of 99% or more for four consecutive iterations. The MATS model has been set to achieve 'P' value of 99% for five consecutive iterations, as the size of the MATS model is relatively small and it should achieve this more stringent convergence criteria.

Passenger Car Unit Factors

- 4.5. Standard factors to convert each vehicle type into Passenger Car Units (PCUs) have been taken from *Transport in the Urban Environment* (Institution of Highways and Transportation, 1997). These are:
 - Motorcycle = 0.4 PCU;
 - Car or Light Goods Vehicle (LGV) = 1.0 PCU;
 - Other Goods Vehicle Class 1 (OGV1) = 1.5 PCU;
 - Other Goods Vehicle Class 2 (OGV2) = 2.3 PCU; and
 - Bus or coach = 2.0 PCU.

Modelled Base Year and Time Periods

- 4.6. The base year for the MATS SATURN highway model is 2010.
- 4.7. Three time periods have been chosen for the MATS SATURN highway model, as defined below:
 - AM peak hour (0800-0900);
 - Average inter peak hour (average of 1000-1600); and
 - PM peak hour (1700-1800).
- 4.8. The above modelled time periods have been used because traffic data analysis shows that 0800 to 0900 and 1700 to 1800 are the busiest hours within the study area. For the inter peak (1000-1600), the traffic flow is reasonably consistent throughout the period therefore average inter peak values were used. (See the MATS Data Collection Report for traffic flow profile analysis)
- 4.9. For all traffic counts, the single hour data have been extracted and calculated based on the time periods described above.
- 4.10. However, to improve the accuracy of the RSI that is input into the model, interviews have been 'funnelled'. The funnelling process ensures that the greatest amount of RSI survey data is used within the building of the matrices.

- 4.11. The funnelling process takes into account the interview data over the whole time period and concentrates it to the MCC count of the peak 1-hour modelled period. The funnelling process provides a wider range of observed origin/destination data and allows all RSI data to be used. For each time period, this occurs as shown below:
 - AM peak period (0700-1000) interviews are scaled to the count between 0800 and 0900;
 - Inter peak period (1000-1600) interviews are scaled to the average hourly count between 1000 and 1600; and
 - PM peak period (1600-1900) interviews are scaled to the count between 1700 and 1800.
- 4.12. Taking the AM peak period as an example, all interviews that were conducted between 0700 and 1000 are used to produce the origin/destination movements for the AM peak hour by scaling to the traffic count of the 0800 to 0900 peak hour.

User Classes

- 4.13. The MATS SATURN highway model comprises six user classes:
 - User Class 1 (UC1) Light Vehicles¹, Home-Based Work (HBW) purpose;
 - User Class 2 (UC2) Light Vehicles, Home-Based Education (HBEd) purpose;
 - User Class 3 (UC3) Light Vehicles, Employers' Business (EB) purpose;
 - User Class 4 (UC4) Light Vehicles , Other Trip Purpose (OTP);
 - User Class 5 (UC5) OGV1, all purposes; and
 - User Class 6 (UC6) OGV2, all purposes.

Time and Distance Costs

4.14. Two important parameters that are input to SATURN models are Pence per Minute (PPM) and Pence per Kilometre (PPK) values. These represent the travellers' valuation of the time and distance of each journey, and the ratio between the two. The interaction of these parameters has significant effect on route choice. If time is highly valued but distance is not, then the quickest route will be chosen no matter how far it is; conversely, if distance is highly valued but time is not, the shortest route would be chosen no matter how slow it is. Generally, the route choice is a balance between the relative importance of time and distance to the traveller.

Value of Time Costs: Pence per Minute

- 4.15. The PPM model parameter was calculated based on time costs from WebTAG Unit 3.5.6D (dated March 2010). All references to WebTAG in the following paragraphs refer to WebTAG Unit 3.5.6D.
- 4.16. WebTAG Table 1 provides the latest Values of Working Time per person, recommended by the DfT, expressed in 2002 values and prices in pounds per hour. These values are given in Table 4.1. These have been applied to the EB trips purpose for cars and LGV (i.e. UC3), and to OGV1 and OGV2 (i.e. UC5 and UC6).

Vehicle Occupant	Resource Cost	Perceived Cost	Market Price
Car driver	21.86	21.86	26.43
Car passenger	15.66	15.66	18.94
LGV (driver or passenger)	8.42	8.42	10.18
OGV1/OGV2 (driver or passenger)	8.42	8.42	10.18

Table 4.1 – 2002 Values of Working Time per Person (2002 prices, £/hour)

¹ Light Vehicles include Cars, LGVs and Motorcycles.

4.17. WebTAG Table 2 provides the latest Values of Non-Working Time per person, expressed in 2002 values and prices in pounds per hour. These values are given in Table 4.2. 'Commuting' values have been applied to HBW (i.e. UC1) and HBEd (i.e. UC2) trip purposes; 'other' values have been applied to the other trip purposes (i.e. UC4).

Table 4.2 – 2002 Values of Non-Worl	king Time per Person	(2002 prices,	£/hour)
-------------------------------------	----------------------	---------------	---------

Purpose	Resource Cost	Perceived Cost	Market Price
Commuting	4.17	5.04	5.04
Other	3.68	4.46	4.46

- 4.18. Vehicle occupancies (Table 4.3), proportion of travel for each purpose (Table 4.4) and proportions of vehicles making up each user class (Table 4.5) have all been calculated from the 2010 RSI data that was collected in March for this study.
- 4.19. As an additional data check, vehicle occupancy values from WebTAG Table 4 and Table 5 (Weekday values included in Table 4.3 below) were compared to the local observed values from the 2010 RSI data. All observed vehicle occupancy compares well to the WebTAG values, except for OGV1 which the observed value is significantly higher than the WebTAG in the PM peak. Sensitivity test, using the WebTAG vehicle occupancy of 1.00 for OGV1 was undertaken. The results show that the differences between the models are negligible, and the observed OGV1 occupancy was used in the final MATS models.

Vehicle Type /	2010 RSI Data			WebTAG
Journey Purpose	АМ	IP	РМ	(2000)
Car / HBW (UC1)	1.10	1.11	1.14	1.15
Car / HBEd (UC2)	2.10	1.52	1.92	-
Car / EB (UC3)	1.16	1.13	1.27	1.21
Car / OTP (UC4)	1.47	1.48	1.52	1.72
LGV / HBW (UC1)	1.06	1.32	1.23	1.46
LGV / HBEd (UC2)	2.00	-	1.00	-
LGV / EB (UC3)	1.21	1.23	1.13	1.20
LGV / OTP (UC4)	1.32	1.39	1.50	1.46
OGV1 / Work (UC5)	1.27	1.17	1.50	1.00
OGV2 / Work (UC6)	1.00	1.00	1.00	1.00

Table 4.3 – Vehicle Occupancy per Trip (including driver)

Table 4.4 – Proportion of Vehicles Travelling for Each Purpose (2010)

Vehicle Type / Journey Purpose	АМ	IP	PM
Car / HBW (UC1)	46%	19%	40%
Car / HBEd (UC2)	4%	2%	4%
Car / EB (UC3)	11%	11%	7%
Car / OTP (UC4)	39%	68%	49%
Car / All Purposes (UC1 to UC4)	100%	100%	100%
LGV / HBW (UC1)	40%	22%	33%
LGV / HBEd (UC2)	1%	0%	1%
LGV / EB (UC3)	39%	54%	23%
LGV / OTP (UC4)	20%	24%	43%
LGV / All Purposes (UC1 to UC4)	100%	100%	100%
OGV1 / Work (UC5)	100%	100%	100%
OGV2 / Work (UC6)	100%	100%	100%

Table 4.5 – Proportion of Vehicle Types in Each User Class (2010)

User Class	Vehicle Type	АМ	IP	РМ
UC1	Car	86%	87%	92%
	LGV	14%	13%	8%
UC2	Car	97%	100%	97%
	LGV	3%	0%	3%
UC3	Car	60%	61%	72%
	LGV	40%	39%	28%
UC4	Car	92%	96%	91%
	LGV	8%	4%	9%
UC5	OGV1	100%	100%	100%
UC6	OGV2	100%	100%	100%

4.20. The 2002 value of time costs for each vehicle type and journey purposes (car, LGV, OGV1 and OGV2; HBW, HBEd, EB and OTP) were combined in the relevant proportions of occupancy (Table 4.3) and purpose (Table 4.4) to derive the values of time cost in 2002 values (at 2002 prices), given in Table 4.6.

Vehicle Type	Journey Purpose	АМ	IP	PM
Car	HBW	5.57	5.60	5.74
	HBEd	10.60	7.65	9.66
	EB	24.29	23.82	26.04
	OTP	6.56	6.62	6.78
LGV	HBW	5.33	6.64	6.18
	HBEd	10.08	-	5.04
	EB	10.15	10.34	9.54
	OTP	5.87	6.22	6.69
OGV1	Work	10.72	9.82	12.63
OGV2	Work	8.42	8.42	8.42

4.21. WebTAG Table 3 provides the forecast growth in the values of time for 2002 onwards, which have been used to calculate growth factors from 2002 to 2010. These figures are shown in Table 4.7.

Table 4.7 – Forecast Growth in the Working and Non-Working Values of Time

Year	GDP Growth (%pa)	Population Growth (%pa)	Work VOT Growth (%pa)	Non-Work VOT Growth (%pa)
2002-2003	2.81	0.36	2.44	1.95
2003-2004	2.95	0.39	2.55	2.04
2004-2005	2.17	0.49	1.67	1.34
2005-2006	2.85	0.66	2.18	1.74
2006-2007	2.56	0.58	1.97	1.57
2007-2008	0.55	0.64	-0.09	-0.07
2008-2009	-4.75	0.67	-5.38	-4.31
2009-2010	1.25	0.73	0.52	0.41
2002-2010	-	-	1.058	0.146

4.22. The 2002 values of time (Table 4.6) were combined with the 2002 to 2010 factor (Table 4.7) to give the 2010 values of time, at 2002 prices in pounds per hour (Table 4.8).

Vehicle Type	Journey Purpose	АМ	IP	РМ
Car	HBW	5.82	5.86	6.01
	HBEd	11.08	8.01	10.10
	EB	25.69	25.19	27.53
	OTP	6.87	6.93	7.09
LGV	HBW	5.57	6.94	6.47
	HBEd	10.54	n/a	5.27
	EB	10.74	10.93	10.09
	OTP	6.14	6.51	7.00
OGV1	Work	11.00	10.39	13.36
OGV2	Work	8.90	8.90	8.90

Table 4.8 – 2010 Perceived Values of Time per Vehicle (2002 prices, \pounds /hour)

4.23. The 2010 values of time were converted from vehicle type to user classes using the proportions given in Table 4.5. The PPM parameter was established by converting these values of time in pounds per hour to pence per minute. The values used within the base year MATS SATURN highway model are shown in Table 4.9.

Table 4.9 – 2010 Values of Time (PPM) Used in the Base Year MATS SATURN Models (2002 prices)

User Class	Value of Time	AM	IP	РМ
UC1	£/hour	5.79	6.00	6.05
	PPM	9.65	10.00	10.08
UC2	£/hour	11.07	8.01	9.97
	PPM	18.45	13.34	16.62
UC3	£/hour	19.72	19.62	22.72
	PPM	32.87	32.70	37.87
UC4	£/hour	6.81	6.91	7.08
	PPM	11.34	11.51	11.80
UC5	£/hour	11.33	10.39	13.36
	PPM	18.89	17.31	22.26
UC6	£/hour	8.90	8.90	8.90
	PPM	14.84	14.84	14.84

Distance Costs: Pence per Kilometre

- 4.24. The PPK value (also known as Vehicle Operation Cost (VOC)) is partially based on speed with the model. These speeds were obtained in two stages: for initial calculations, the observed speed data from TrafficMaster data (2008/2009) was used to generate initial values of PPM and PPK which were fed into the model to give better estimates of the average speeds in the network; these speeds were then fed back into the PPK calculations to give the final PPM and PPK values for the model. These speeds were 64, 69 and 62 kph for the AM, inter and PM peak models respectively.
- 4.25. WebTAG 3.5.6D gives details on the calculations required to produce the VOC, which are composed of a fuel element and non-fuel element.

Fuel Element

4.26. WebTAG Table 10 gives the values of the four parameters that are used to calculate fuel consumption. The parameters are expressed in average 2002 values and prices and these have been reproduced in Table 4.10 below.

Table 4.10 – 2002 Fuel VOC Formulae Parameter Values (2002 prices, litres/kilometre)

Vehicle	Parameters					
Category	а	b	С	d		
Average Car	0.9574479	0.04782644	-0.00012946	2.53734E-06		
Average LGV	1.162824392	0.061032451	-0.00049695	8.63611E-06		
OGV1	1.564481329	0.260097879	-0.00378306	3.24446E-05		
OGV2	3.613294863	0.42026914	-0.00494704	3.82806E-05		

4.27. These parameters, along with the average speed (ν) for each time period, are used to calculate the fuel consumption for each model using the following formula. The results are shown in Table 4.11.

$$L = (a + bv + cv^2 + dv^3)/v$$

Where:

- *L* = *fuel consumption*, *expressed in litres per kilometre*;
- v = average speed in kilometres per hour; and
- a, b, c, d are parameters defined for each vehicle category.

Table 4.11 – 2002 Fuel Consumption Values (2002 prices, litres/kilometre)

Vehicle Category	AM Ave Speed (kph)	AM Fuel Consumption (litre/km)	IP Ave Speed (kph)	IP Fuel Consumption (litre/km)	PM Ave Speed (kph)	PM Fuel Consumption (litre/km)
Average Car	63.72	0.065	68.72	0.065	61.86	0.065
Average LGV	63.72	0.083	68.72	0.085	61.86	0.082
OGV1	63.72	0.175	68.72	0.176	61.86	0.176
OGV2	63.72	0.317	68.72	0.314	61.86	0.319

4.28. In order to factor these 2002 fuel efficiency values to 2010 levels, WebTAG Table 13 was used (reproduced in Table 4.12).

Voor	Change in Vehicle Efficiency (%pa)				
rear	Average Car	Average LGV	OGV1	OGV2	
2002-2003	-0.79	0.64	0.46	-0.17	
2003-2004	-0.83	-1.42	0	0	
2004-2005	-1.04	-1.78	0	0	
2005-2006	-1.02	-1.49	-1.23	-1.23	
2006-2007	-0.44	-1.49	-1.23	-1.23	
2007-2008	-1.06	-1.49	-1.23	-1.23	
2008-2010	-1.11	-1.49	-1.23	-1.23	
2002-2010	0.9283	0.9040	0.9443	0.9384	

Table 4.12 – Vehicle Fuel Efficiency Improvements

4.29. Multiplying these factors (Table 4.12) by the 2002 fuel consumption values (Table 4.11) gives the 2010 fuel consumption values which is provided in Table 4.13.

Table 4.13 – 2010 Fuel Consumption Values (litres/kilometre)

Vehicle Category	AM	IP	РМ
Average Car	0.060	0.060	0.060
Average LGV	0.075	0.076	0.074
OGV1	0.166	0.166	0.166
OGV2	0.298	0.294	0.299

4.30. WebTAG Table 11 gives the 2008 resource costs for fuel and WebTAG Table 14 gives the forecast growth for future years. These have been combined to give the 2010 fuel costs, in 2002 prices, shown in Table 4.14 below.

Table 4.14 – 2010 Fuel Costs	(2002 prices, pence/litre)
------------------------------	---------------------------	---

Vehicle Category	Fuel	Duty (2010)	Тах	Pence/litre
Car (work)	32.18	48.00	-	80.18
Car (non-work)	32.18	48.00	17.50	94.21
LGV (work)	33.91	48.00	-	81.91
LGV (non-work)	33.91	48.00	17.50	96.24
OGV1	34.03	48.00	-	82.03
OGV2	34.03	48.00	-	82.03

4.31. These fuel costs (Table 4.14) can be multiplied by the 2010 fuel consumption values (Table 4.13) to produce the fuel element of the VOC, which is provided in Table 4.15 below.

Vehicle Category	AM litre/km	AM pence/km	IP litre/km	IP pence/km	PM litre/km	PM pence/km
Car (work)	0.060	4.831	0.060	4.827	0.060	4.839
Car (non-work)	0.060	5.677	0.060	5.671	0.060	5.685
LGV (work)	0.075	6.122	0.076	6.263	0.074	6.081
LGV (non-work)	0.075	7.193	0.076	7.359	0.074	7.146
OGV1	0.166	13.582	0.166	13.643	0.166	13.597
OGV2	0.298	24.416	0.294	24.146	0.299	24.568

Non-Fuel Element

4.32. WebTAG Paragraph 1.3.16 gives a formula for calculating the non-fuel element of VOC (in pence per kilometre), which includes expenses such as oil, tyres, maintenance and depreciation for all vehicles, along with a vehicle capital saving for vehicles in working time only. The formula is:

$$C = a1 + \frac{b1}{v}$$

Where:

C = *cost in pence per kilometre travelled*;

v = average link speed in kilometres per hour;

4.33. WebTAG Table 15 gives the values of parameters *a*1 and *b*1 for input to the above formula, reproduced in Table 4.16.

Table 4.16 – Non-Fuel Element Formula Parameter Values

Parameter Values				
a1 (pence/km)	<i>b</i> 1 (pence/km)			
4.069	111.391			
3.151	-			
5.910	38.603			
5.910	-			
5.501	216.165			
10.702	416.672			
	Parameter a1 (pence/km) 4.069 3.151 5.910 5.910 5.501 10.702			

4.34. Using the average speed (v) for each time period, the non-fuel element of the VOC can be calculated (Table 4.17).

Vehicle Category	AM Ave Speed (kph)	AM Non- Fuel VOC (pence/km)	IP Ave Speed (kph)	IP Non- Fuel VOC (pence/km)	PM Ave Speed (kph)	PM Non- Fuel VOC (pence/km)
Car (work)	63.72	5.82	68.72	5.69	61.86	5.87
Car (non-work)	63.72	3.15	68.72	3.15	61.86	3.15
LGV (work)	63.72	6.52	68.72	6.47	61.86	6.53
LGV (non-work)	63.72	5.91	68.72	5.91	61.86	5.91
OGV1	63.72	8.89	68.72	8.65	61.86	9.00
OGV2	63.72	17.24	68.72	16.77	61.86	17.44

Table 4.17 – Non-Fuel Element of VOC (2002 prices, pence/kilometre)

Total Vehicle Operating Cost

4.35. The fuel and non-fuel elements of VOC are summed to give the total VOC for each vehicle category for each time period, shown in Table 4.18.

Table 4.18 -	Total VOC	for Each Vehicle	e Category (2002	prices, pence/kilometre)
--------------	-----------	------------------	------------------	--------------------------

		AM			IP			РМ	
Vehicle Category	Fuel VOC	Non- Fuel VOC	Total VOC	Fuel VOC	Non- Fuel VOC	Total VOC	Fuel VOC	Non- Fuel VOC	Total VOC
Car (work)	4.83	5.82	10.65	4.83	5.69	10.52	4.84	5.87	10.71
Car (non-work)	5.68	3.15	8.83	5.67	3.15	8.82	5.69	3.15	8.84
LGV (work)	6.12	6.52	12.64	6.26	6.47	12.73	6.08	6.53	12.62
LGV (non-work)	7.19	5.91	13.10	7.36	5.91	13.27	7.15	5.91	13.06
OGV1	13.58	8.89	22.48	13.64	8.65	22.29	13.60	9.00	22.59
OGV2	24.42	17.24	41.66	24.15	16.77	40.91	24.57	17.44	42.01

4.36. Using the proportions of vehicles given in Table 4.5, the PPK values for each user class can be derived – these are shown in Table 4.19.

Table 4.19 – 2010 Vehicle Operating Costs (PPK) Used in the Base Year MATS SATURN Models (2002 prices)

User Class	AM	IP	PM
UC1	9.41	9.40	9.19
UC2	8.96	8.82	8.95
UC3	11.44	11.38	11.23
UC4	9.18	9.02	9.22
UC5	22.48	22.29	22.59
UC6	41.66	40.91	42.01

PPM and PPK Parameters: Final Values

4.37. When input in to the SATURN models, the PPM and PPK values are given as a ratio, rather than absolute values. The final parameters for the AM, inter and PM peak base year MATS SATURN highway models are given in Table 4.20, Table 4.21 and Table 4.22 respectively.

Table 4.20 – AM Peak PPM and PPK Parameters

Lisor Class	Absolute Value	es (2002 prices)	Model Pa	rameters
	PPM	РРК	PPM = 1	PPK =
UC1	9.65	9.41	1.00	0.97
UC2	18.45	8.96	1.00	0.49
UC3	32.87	11.44	1.00	0.35
UC4	11.34	9.18	1.00	0.81
UC5	18.89	22.48	1.00	1.19
UC6	14.84	41.66	1.00	2.81

Table 4.21 – Inter Peak PPM and PPK Parameters

Lleor Class	Absolute Value	es (2002 prices)	Model Parameters		
	PPM	РРК	PPM = 1	PPK =	
UC1	10.00	9.40	1.00	0.94	
UC2	13.34	8.82	1.00	0.66	
UC3	32.70	11.38	1.00	0.35	
UC4	11.51	9.02	1.00	0.78	
UC5	17.31	22.29	1.00	1.29	
UC6	14.84	40.91	1.00	2.76	

Table 4.22 – PM Peak PPM and PPK Parameters

Hear Class	Absolute Values (2002 prices))	Model Parameters		
0361 01855	PPM		РРК	F	PPM = 1		PPK =
UC1	10.08		9.19		1.00		0.91
UC2	16.62		8.95		1.00		0.54
UC3	37.87		11.23		1.00		0.30
UC4	11.80	١.	9.22		1.00		0.78
UC5	22.26		22.59		1.00	i.	1.01
UC6	14.84		42.01		1.00	١.	2.83

5. Highway Model – Network Development

The network coding for the MATS SATURN highway model has been carried in line with the SATURN manual and DMRB guidance. Key network characteristics are discussed in this chapter.

Highway Model – Network Development

Network Coverage

5.1. The network covers all key links within the study area, with a greater emphasis on the centre of March. The model stretches from the A141/A605 junction in the north to the A141/B1093 junction in the south; and from the level crossing on the B1099 in the east to Doddington in the west.

Network Coding

5.2. The network coding has been carried out in line with the SATURN manual and the DMRB guidance. Network calibration and alterations were coded in stages so that any modelling errors could easily be traced and amended.

Links

- 5.3. The core area of the network is coded in simulation with buffer links connecting to external zones. Figure 2.1 shows the MATS network link structure and coverage, and the simulation links are shown in blue and buffer links are shown in red.
- 5.4. For all urban zone connectors, 'stub' zone connectors have been used. A stub zone connector is a single point of connection from a zone to the network. This method has been used as it will most accurately represent the loading points of traffic onto the highway network when considering the size of the MATS zones in the urban area. The capacities of the 'stubs' are unrestricted to ensure the demand to/from the zones can successfully enter the traffic network. For all non-urban zone connectors, they have been connected to the appropriate routes to the MATS network. Figure 5.1 shows all urban zone connectors that have been coded as 'stubs'.
- 5.5. All network links have been checked to ensure link attributes, such as link distance and speed, are consistent along a road and in both directions. Figure 5.2 shows the core network by coded link speed. It should be noted that in some cases, the coded link speed might be different to the speed limit as the coded link speed takes into account other link attributes, such as road conditions.
- 5.6. Crow-fly and coded link distance comparison was undertaken to ensure all coded link distance are reasonable and appropriate. For all simulation links within the network, the coded distances are either equal to or longer than the crow-fly distances as expected. Figure 5.3 shows the percentage difference between the coded distance and crow-fly distance for all simulation links.
- 5.7. For majority of the simulation links, the coded distances are very similar to the crow-fly distances. For a few of the longer links toward the edge of the network, such as B1099 Upwell Road from Cavalry Drive to Sixteen Foot Bank, the coded distances are significantly longer than the crow-fly distances (approximately 30%) due to the curves and alignments of the road.
- 5.8. Buffer links have not been included in the crow-fly versus coded link distance check as to keep the network concise, the node positions for the buffer network are generally not geographically representative and the coded distances for buffer links are generally much greater than the crow-fly distances.

Figure 5.3 – Percentage Difference between Coded and Crow-Fly Link Distances

Nodes

- 5.9. For the simulation network, maps, aerial and street-view photographs have been used to assist the junction coding process.
- 5.10. For all mini-roundabouts, node type 2 (roundabout with U-turns banned) has been used and a low circulatory time has been set; and for all other roundabouts, node type 5 (roundabout with U-turns permitted) has been used with a longer circulatory time. Traffic signals and signalised pedestrian crossings have been coded as signalised nodes. Timings for all signals modelled were provided by CCC.
- 5.11. Level crossings have been coded as link penalties. Level crossings generally have long green time and cycle time, and coding it as traffic signals can often cause assignment errors. The link penalties for all modelled level crossings have been calculated based on the 2010 observed barrier closure times for the B1101 Station Road level crossing.
- 5.12. The number of level crossing closures and the average length of barrier down-time per closure within each peak hour were obtained from the observed data for B1101 Station Road. It is important to note that a vehicle can arrive at the level crossing at any point during the closure (i.e. Some vehicles experience the full delay of the closure whereas some vehicles may experience minimal delay if they arrive just as the barriers are lifting). To account for this within the model, level crossing observations undertaken for previous projects have shown that the average delay experience by each vehicle is approximately half of the closure time. Based on this information, the average penalty for each vehicle passing the level crossing within the modelled hour is calculated as follow:

Level Crossing Link Penalty (s) =
$$\frac{\left(\frac{Total \ Level \ Crossing \ Closure \ Time \ (s)}{Number \ of \ Closures}\right)}{2} \times \frac{Total \ Level \ Crossing \ Closure \ Time \ (s)}{3600}$$

- 5.13. Types of level crossings were also considered as part of link penalty calculation. Different types of level crossing barriers have different safety margins. For example, automatic barrier generally have shorter closure time than manual barrier for the same train due to safety. This was taken into account when calculating the link penalties for all modelled level crossings.
- 5.14. All other junctions have been coded as priority junctions with give-way markers on the appropriate arms.

5.15. Figure 5.4 highlights all roundabout, level crossing and signalised junction nodes for the simulation network. Although the level crossings between March and Wisbech have been highlighted in Figure 5.4 for completeness, it has been noted that this railway line is currently not in operation, and no penalties have been applied to these level crossings.

Figure 5.4 – Types of Junctions

Speed Flow Curves

- 5.16. Speed flow curves are used within the model to reflect capacity constraint on links due to flow volume. This is achieved by applying a speed flow relationship which represents decreases in link speeds with flow increases, with the characteristics of the road determining the nature of this relationship. Speed flow curves have been assigned to all rural links with link distance greater than 200m as delays for these links tend to be dictated by conditions on the link itself as opposed to junction properties.
- 5.17. Speed flow curves are not assigned to urban or short (i.e. < 200m) links because the main cause of delay for these network links is junction delay, not link delay, and therefore it is not appropriate to apply speed flow curves to these links.
- 5.18. COBA speed flow curves have been used for this study. Figure 5.5 highlights the links with speed flow curves; and Table 5.1 lists the COBA speed flow curves used and shows how they differ for rural, suburban and urban roads.

S0	S 1	S2	F	С	Ν	Description
(kph)	(kph)	(kph)	(PCU/hour /lane)	(PCU/hour /lane)		
Rural						
116.0	109.5	45	1,200	2,520	3.81	3 or 4 Lane Motorway (Dual Carriageway)
112.0	105.5	45	1,200	2,430	3.85	2 Lane Motorway (Dual Carriageway)
108.5	102.5	45	1,080	2,260	3.66	Dual Carriageway 3 Lane All Purpose Road
104.5	98.5	45	1,080	2,180	3.68	Dual Carriageway 2 Lane All Purpose Road
91.0	71.5	45	1,100	1,860	2.24	Good Quality Single Carriageway 10 Metre Width
84.0	64.5	45	1,100	1,660	2.13	Typical Quality Single Carriageway 10 Metre Width
87.0	71.5	45	880	1,640	2.16	Typical Quality Single Carriageway 7.3 Metre Width
78.0	63.5	45	850	1,380	2.07	Typical Quality Single Carriageway 7.0 Metre Width
67.0	53.5	45	770	1,010	1.79	Bad Quality Single Carriageway 6.5 Metre Width
<u>Suburb</u>	<u>an</u>					
78.0	66.0	35	1,050	1,730	3.29	Dual Carriageway With Low Development
71.0	45.0	35	1,050	1,270	2.04	Dual Carriageway With Typical Development
58.0	46.5	35	250	500	1.40	Dual Carriageway With Heavy Development
68.0	56.0	35	1,050	1,730	3.74	Single Carriageway With Low Development
61.0	35.0	35	1,050	1,270	2.32	Single Carriageway With Typical Development
45.0	36.5	35	250	500	1.55	Single Carriageway With Heavy Development
<u>Urban</u>						
54.0	39.5	25	490	980	1.67	Good Quality Non-central Area With 50% Development
48.5	36.8	25	390	780	1.56	Typical Quality Non-central Area With 50% Development
44.5	34.8	25	325	650	1.48	Non-central Area With 100% Development
37.0	26.0	15	370	740	1.83	Central Area, Average of 2 Junctions per km
34.0	24.5	15	315	630	1.73	Central Area, Average of 4.5 Junctions per km
28.5	21.8	15	225	450	1.55	Central Area, Average of 9 Junctions per km
Small 1	<u>Town</u>					
65.5	57.0	30	700	1,300	3.00	Typical Road with 35% Development
56.5	48.0	30	700	1,300	3.39	Typical Road with 60% Development
46.5	38.0	30	700	1,300	2.45	Typical Road with 90% Development

Table 5.1 – Speed Flow Curve Classification

S0 = free flow speed; S1 = 'intermediate' break point speed; S2 = speed at capacity; F = maximum flow at which the free flow conditions hold; C = link capacity; N = N factor

Figure 5.5 – Links with Speed Flow Curves

Bus Routes

- 5.19. A full review of the base year bus provision was carried out and all bus routes that operated within, or passed through March in October 2010 were coded into the highway model. The bullet points below list the bus routes that have been included. Details of the exact routes and bus frequencies can be found within the MATS Data Collection Report.
 - 33: Peterborough Whittlesey March;
 - 46: Kings Lynn Wisbech March; •
 - 56: Wisbech March Benwick Or Manea;
 - 380: Wisbech Friday Bridge March; .
 - X9: Littleport Ely Cambridge; and
 - 010: Kings Lynn London Victoria

6. Model Development – Matrix Development

Full process of generating model demand matrices for the base year MATS SATURN highway models is discussed in this chapter.

Model Development – Matrix Development

6.1. This chapter gives details on the full process of generating model demand matrices for the base year MATS SATURN highway models.

Building the Observed Matrices

6.2. Observed demand matrices were built using only the data collected in the RSI surveys. As discussed previously in this report, the RSI survey data provides origin/destination information for the strategic movements within the study area. The exact process used to generate the observed matrices from this data is summarised below.

Data Cleaning and Geo-coding

- 6.3. Raw RSI survey data is supplied as a simple table for each survey site with columns containing the following information:
 - The time at which the vehicle passed through the RSI site;
 - Vehicle type (Car/LGV/OGV1/OGV2/Motorcycle);
 - Vehicle occupancy;
 - The address, postcode, OSGR and purpose of the origin;
 - The address, postcode, OSGR and purpose of the destination; and
 - The location of the car park in March if applicable.
- 6.4. This data was plotted using GIS software to enable illogical trip movements to be removed. This was achieved by plotting each origin and destination point (joined by a line) for each RSI site, and analysing the visual output in detail to ascertain whether or not each trip would logically have passed through that survey site. A route planner was used to check any alternative routes, as this enables time and distance comparisons of different routes between any given start and end points.
- 6.5. After the data had been cleaned of illogical trip movements, each origin and destination was assigned to a zone in the model according to the geographical location of its postcode using GIS software. In the case where car park data was provided, the location of vehicle destination (i.e. the car park) would overwrite the ultimate trip destination postcode.
- 6.6. Individual site matrices were then produced and assigned to the model network and the model assignments were checked visually to ensure the cleaned data only contain logical movements.

Purpose Identification

6.7. The survey data was collected with an origin and destination purpose; however, for the Car and LGV trips, the matrices only require one purpose per trip. The RSI purposes are shown in Table 6.1; and the modelled purposes are HBW, HBEd, EB and OTP (as defined previously in Paragraph 4.13). The conversions shown in Table 6.2 allow a single purpose to be assigned to each trip.

Table 6.1 – RSI Origin/Destination Purpose Definitions

Code	Description
1	Home
2	Tourism
3	Work
4	Employers' Business
5	Education
6	Shopping
7	Personal Business
8	Visit Friends/Family
9	Recreation/Leisure

Table 6.2 – Conversion to Trip Purposes

		Destination Purpose								
		1	2	3	4	5	6	7	8	9
	1	ОТР	ΟΤΡ	HBW	EB	HBEd	ΟΤΡ	ΟΤΡ	OTP	OTP
	2	ОТР	ΟΤΡ	ΟΤΡ	EB	ΟΤΡ	ОТР	ΟΤΡ	ΟΤΡ	ΟΤΡ
pose	3	HBW	ΟΤΡ	EB	EB	ΟΤΡ	ΟΤΡ	ΟΤΡ	ΟΤΡ	ΟΤΡ
	4	EB	EB	EB	EB	EB	EB	EB	EB	EB
Pur	5	HBEd	ΟΤΡ	ΟΤΡ	EB	ΟΤΡ	ΟΤΡ	ΟΤΡ	ΟΤΡ	ΟΤΡ
Origin	6	ОТР	ΟΤΡ	ΟΤΡ	EB	ОТР	ΟΤΡ	ОТР	ΟΤΡ	ΟΤΡ
	7	ОТР	ΟΤΡ	ΟΤΡ	EB	ΟΤΡ	ОТР	ΟΤΡ	ΟΤΡ	ΟΤΡ
	8	ОТР	ΟΤΡ	ΟΤΡ	EB	ОТР	ΟΤΡ	ΟΤΡ	ΟΤΡ	ΟΤΡ
	9	ОТР	ΟΤΡ	ΟΤΡ	EB	ΟΤΡ	ΟΤΡ	ΟΤΡ	ΟΤΡ	ΟΤΡ

Transposition

- 6.8. The RSI data provides observed matrices for the interview direction for all individual RSI sites, and by transposition, non-interview direction matrices can be generated from interview direction matrices, providing bi-directional observed matrices for all RSI sites.
- 6.9. In this process, for all user classes except UC4 (OTP), the AM matrices were transposed to provide non-interview direction information for the PM peak; and vice versa for the AM peak non-interview direction. For UC4, OTP trips, transposed matrices from the same time period were used for both AM and PM peak as in most cases, the outgoing and return journeys for OTP trips are made within the time period. For the inter peak, the non-interview direction matrices were taken from the same periods for all user classes. Table 6.3 shows the sources of the non-interview direction matrices.

Table 6.3 – Sources of Non-Interview Direction Matrices

User Class	AM	IP	PM
UC1 HBW	PM^{T}	IP^{T}	AM ^T
UC2 HBEd	PM^{T}	IP ^T	AM^T
UC3 EB	PM^{T}	IP ^T	AM^T
UC4 OTP	AM ^T	IP ^T	PM^{T}
OGV1	PM^{T}	IP ^T	AM^T
OGV2	PM^{T}	IP^T	AM^T

 AM^{T} = Transposition of AM; IP^{T} – Transposition of IP; PM^{T} = Transposition of PM

Factoring – RSI Survey Data

- 6.10. Since the RSI surveys only interview a subset of the traffic passing through each site, it is necessary to expand the number of interviews to the observed traffic flow at each site.
- 6.11. As discussed in Chapter 4 of this report, the interview data was 'funnelled', so the MCC and ATC data reference below are single-hour counts, whereas the 'No. of interviews' are collected over a greater length of time.
- 6.12. Firstly, a factor, F_1 , was calculated for each time period for each vehicle type at each site, according to the interview direction MCC data that has been recorded during the RSI surveys. This factor was equal to

$$F_1 = \frac{MCC}{No. of Interviews}$$

6.13. A second factor, *F*₂, was then calculated for each modelled hour at each site to scale the MCC data to the average ATC value for the same direction. This was undertaken because flow profile analysis of the ATC data shows that the flow level of the MCC survey day (which was undertaken on the same day as the RSI survey) was generally lower than average. This might be expected due to the additional delay caused by the RSI surveys. Therefore an adjustment factor, *F*₂, was applied to ensure the correct level of traffic flow was modelled. For more information on the ATC adjustment factors, see Chapter 3 of the MATS Data Collection Report.

$$F_1 = \frac{ATC}{MCC}$$

6.14. Finally these two factors, F_1 and F_2 , were combined into a single interview direction expansion factor, F, which was applied to each survey record to scale the interviews up to the average observed hourly traffic flow by vehicle type.

 $F = F_1 \times F_2$

6.15. At the same time, non-interview direction factors were calculated for the transposed matrices. This was calculated in the same way as the interview direction factors, except that each MCC and ATC data was replaced with the equivalent count in the opposite direction and the number of interviews replaced with the number of transposed interviews.

Matrix Squaring

- 6.16. At the end of the above processes, the RSI data is still in table format but with additional columns containing the following information:
 - Origin Zone;
 - Destination Zone;
 - User Class (Trip Purpose);
 - Time Period; and
 - Expansion Factor.
- 6.17. In order to use this information in the MATS SATURN model, the data has to be in the form of a square matrix. This is achieved by using a spreadsheet Pivot Table with origin zones as row headings, destination zones as column headings and a sum of expansion factors (in PCU) as the data.
- 6.18. This process was undertaken by user class and time period, and different matrices were produced for the interview and non-interview direction. Using the process described above, 252 matrices were created (3 Time Periods x 7 RSI Surveyed Arms (i.e. Site R-1, R-2, R-3, R-5, R-6A, R-6B & R-6C) x 2 Directions x 6 User Classes).

Seasonality

- 6.19. DMRB (Volume 13 Section 1 Part 4 Traffic Flow Input to COBA) states that *April, May, June September and October (excluding periods affected by bank holidays)* are neutral months. Traffic surveys undertaken in neutral months are considered to be more reliable, and in general, the traffic data used for the development of a traffic model should be based on neutral month data. If data outside of the neutral months is to be used, seasonality factors should be applied to the traffic data to ensure the traffic data used is representative of average weekday conditions.
- 6.20. Table 6.4 lists all the survey dates of all the traffic survey data that was used for this study. All surveys undertaken as part of the 2010 March Data Collection programme were undertaken in October 2010, a neutral month, therefore no seasonality adjustment was required. The data from the 2010 March Data Collection programme was used for the MATS model demand development process as well as model calibration and validation.
- 6.21. Additional survey data from the CCC annual town monitoring programme was also used, mostly as an additional check for the traffic flow around the model network. All surveys were undertaken in October 2010, except two (i.e. E-10 & E-11) which were undertaken on 2nd November 2010. Traffic flow level checks were undertaken for Site E-10 and E-11, and the results show that the data from these two sites are consistent with other adjacent traffic survey sites undertaken in October 2010. Therefore seasonality adjustment was not required for all CCC annual town monitoring sites.

Table 6.4 – Traffic Count Survey Dates

	Site ID	Location	Count	2010 Survey Da		Dates		
			Туре	12Oct (Tue)	14Oct (Thu)	19Oct (Tue)	21Oct (Thu)	2Nov (Tue)
	E-1	Wisbech Rd	MCC			\checkmark		
ing	E-2	Norwood Rd	MCC			\checkmark		
itor	E-3	Elm Rd	MCC			\checkmark		
lon	E-4	Creek Rd	MCC			\checkmark		
2	E-5	Upwell Rd	MCC			\checkmark		
_o	E-6	Wimblington Rd	MCC			\checkmark		
al T	E-7	Knights End Rd	MCC			\checkmark		
nu	E-8	Burrowmoor Rd	MCC			\checkmark		
Ar	E-9	Gaul Rd	MCC			\checkmark		
00	E-10	A141 March Bypass	MCC					\checkmark
0	E-11	Town Bridge	MCC					\checkmark
	B-1*	B1101 Elm Bd	RSI &	\checkmark				
		Brior Emrid	MCC					
	B-2*	B1099 Upwell Bd	RSI &			\checkmark		
	=		MCC					
	B-3*	B1101 Wimblington Bd	RSI &			\checkmark		
		2 · · · · · · · · · · · · · · · · · · ·	MCC					
	R-4**	A141 Isle of Elv Way	MCC				\checkmark	
	R-5*	A141 Wisbech Rd	RSI &	\checkmark				
			MCC					
	TC-1	B1101 Elm Rd/Estover Bd/Norwood Bd	MCTC				\checkmark	
	TC-4	A141/Manea Bd	MCTC				\checkmark	
	TC-5	A141/King St	MCTC				1	
	TC-6	A141/B1101 Wimblington Bd	MCTC		\checkmark			
	TC-7	B1101 Wimblington Bd/Jobs I n	MCTC				\checkmark	
	TC-8	A141/Knights End Bd	MCTC		\checkmark		-	
ion	TC-9	A141/Burrowmoor Bd	MCTC		·		\checkmark	
ect	TC-10	A141/Gaul Bd	MCTC				, ,	
00	TC-11	A141/B1099 Wishech Bd	MCTC		1		·	
ita (TC-12		MCTC		•		1	
Da	TC-13	B1101 High St/Burrowmoor Bd	MOTO				· ./	
rch	TC 14	B1101 High St/St Potors Pd	MOTO				•	
Ma	TC 15	A141/Heatmoor Ave	MOTO		v		./	
10	TC-15	A141/RI002 Deddinaton Rd	MOTO				v	
20	TC-10	R1101 Fim Dd/Twenty Fast Dd	MOTO				•	
	TC-17	BITUT EIII Rd/ Twenty Foot Rd	MOTO		/		v	
	TC-18	BITOT Station Ro/County Ro	MOTO		•			
	TC-19	B1099 Wisbech Rd/Norwood Rd	MCTC		✓		/	
	10-20	B1101 Station Rd/Greek Rd	MCTC				~	
	TC-21	B1101 Station Rd/B1101 Broad	MCTC				\checkmark	
	TC-22	St/B1099 Dartford Rd B1101 High St/Elwyn Rd/Market	MCTC				\checkmark	
	TC 22	PI B1000 Lipwell Bd/Elwyr Bd	MOTO				./	
	TC 24						*	
	TC 05	Hundrodo Dd/Malbaurra Aug					•	
	TC-25		NOTO				v	
	TC 07		NOTO				v	
	10-27	Durrowmoor Ka/Gaul Ka	MCTC				v	
	LC-1	B1101 Station Rd level	MCC		\checkmark			

*ATC was also undertaken at Site R-1 to Site R-5 between Monday 11th to Sunday 24th October 2010. **RSI was not undertaken at Site R-4 due to site restriction and safety.

Compiling the Site Matrices

6.22. As discussed in Paragraph 6.18, 252 matrices were created. To compile these individual matrices into full site matrices, a batch file was used which carried out the following steps:

- For each time period and user class, add together the interview and non-interview direction matrices.
- For each RSI site, stack the six user classes to produce a single observed matrix by site and time period.
- 21 bi-directional site matrices, by time period and by RSI site, were created at the end of this process.

Removal of Double Counting

- 6.23. Due to the locations of the RSI sites, some movements would have been accounted for in two (or more) site matrices. For example, trips between Wisbech to March City Road car park would have travelled through RSI Site R-5 (or Site R-1) and Site R-6. The interviews at each RSI site have been factored up to the number of vehicles counted passing through that site and such that, trips such as the one described above would replicate each other and therefore be double-counted in the demand matrices.
- 6.24. It should also be noted that due to the way in which the transposed components of the matrices were created, all trips that pass through more than one RSI site (regardless of the direction of travel) would have been double counted.
- 6.25. The barrier method of removing double counting has been employed for the MATS model. This means that, for each origin/destination zone pair, the number of RSI sites that a trip would have passed through was counted. This information is used to build up a 'double counting' mask matrix which contains one for any movement passes through zero or one RSI sites, two for any movements that pass through two RSI sites, three for any movements that pass through three RSI sites and so on.

Compiling the Full Observed Matrices

- 6.26. Finally to compile the full observed matrices, all site matrices were added by time period and then divided by the 'double counting' mask matrix to remove double counting.
- 6.27. Figure 6.1 below is a flow chart summarising the key steps for compiling the full observed matrices.
- 6.28. Table 6.5 below shows the matrix totals before and after double counting has been removed by time period. All intra-zonal trips (i.e. Zone 101 to Zone 101) have also been removed as a final step to produce the full observed matrices as these trips would not enter the traffic model and have been removed for tidiness.

Table 6.5 – Matrix Totals (Full Observed)

	AM	IP	PM
Before Double Counting Removal	5,536	4,758	6,331
After Double Counting Removal	3,879	3,203	4,291
% Reduction after Double Counting Removal	30%	33%	32%
After Intra-zonal Trip Removal	3,879	3,194	4,291

Figure 6.1 – Observed Matrix Building Process

Building the Synthetic Matrices

- 6.29. Although the RSI data, which was used to create the full observed matrices, provides demand data for many of the traffic movements within the study area, there are movements within the MATS model which would not have been captured by the RSI surveys. For example, from Wimblington to Hostmoor Avenue Industrial Estate, and from March railway station to Mill View retail area.
- 6.30. To create complete demand matrices for all movements within the MATS model, a synthetic component of the demand matrices was required for the partially observed and unobserved movements in the matrix. The basis of the synthetic data for this study is the 2001 JTW National Census Data for all user classes, except UC2 (HBEd) for which the CCC education trip data was used.
- 6.31. The process used to create the synthetic matrices for all user classes, except UC2 (HBEd) was as follows:

Processing the 2001 JTW Census Data

- 1) As discussed in Paragraph 3.14 to 3.16, a 2001 JTW Census matrix based on the MATS zone plan was generated using GIS software and Microsoft Access Queries.
- 2) The JTW matrix was factored from 2001 to 2010 using the traffic flow data from the 2001 and 2010 Traffic Monitoring Report for Cambridgeshire (Table 6.6).

Table 6.6 – 2001 to 2010 Factor (March Annual Town Monitoring Report)

	Total Vehicles entering/leaving March
2001	32,063
2010	33,654
2001 to 2010 Factor	1.0496

- 3) The 2010 JTW matrix was transposed to create the 2010 work to home (WTH) matrix.
- 4) The 2010 JTW and WTH matrices were divided from all day into the modelled time periods based on the proportions calculated from the RSI data. Table 6.7 below shows the proportion of JTW and WTH trips for each modelled time period.

Table 6.7 – Proportion of JTW and WTH Trips

	AM	IP	РМ
Journey to Work	20%	5%	3%
Work to Home	2%	4%	22%

5) The JTW and WTH matrices (per time period) were added together to produce the full bi-directional infill data for journeys to and from work (i.e. trip purpose definition equivalent to MATS UC1 (HBW) (see Table 6.2)).

Creating Infill Data for Other User Classes

6) Percentages were calculated that describe each of the other user classes as proportion of HBW, using the observed data for each time period (Table 6.8).

Table 6.8 – Other User Class as Proportion of HBW

	AM	IP	PM
UC1 HBW	100%	100%	100%
UC2 HBEd*	-	-	-
UC3 EB	33%	83%	22%
UC4 OTP	80%	321%	122%
UC5 OGV1	6%	15%	3%
UC6 OGV2	8%	26%	7%

*The synthetic element of UC2 (HBEd) trips are based on CCC Education Trip Data (See Paragraph 6.37 to Paragraph 6.40)

7) The HBW Census matrices were multiplied by the above factors to create a starting point for the synthetic matrices for each user class.

Identifying all partially observed and unobserved movements

8) To ensure that the traffic movements that are observed by the RSI surveys would not be over-written by the synthetic data, a mask matrix was produced and applied to each of the infill data matrices created at the end of Step 7.

Gravity Models and Logit Functions

- 9) After stripping out the data that had already been fully observed, the differences between the infill data matrices and the corresponding observed matrices were calculated for all partially observed and unobserved movements to identify the 'missing' trips.
- 10) The row and column totals were calculated for the above difference matrices these provide the total number of trips to and from each zone, known as trip ends, to be synthesised for each time period and user class.
- 11) From the RSI data, the observed trip length distributions were calculated for each time period and user class. Each distribution was plotted on a graph.
- 12) A logit function was generated to replicate the trip length distribution for each time period and user class (see Paragraph 6.32 to Paragraph 6.36 below for details on the gravity model and logit function). Each logit function was calibrated by changing the values of the coefficients until the graph of the function matched the observed trip length distribution as closely as possible.
- **13)** From the MATS SATURN models for each time period (assigned with the observed matrices), a distance skim (a matrix containing the distances between every origin and destination in the network) was taken, to create a matrix of the average observed distance between each origin/destination zone pair.
- 14) Using the logit functions (Step 12), distance skims (Step 13) and observed movement mask (Step 8), for each time period and user class, a matrix of the distribution of all partially observed and unobserved trip movements was generated.
- **15)** Feed the trip ends and the trip distribution matrices into a Furness process, to distribute the required trip ends according to the calculated distribution, creating synthetic matrices of the partially observed and unobserved movements.

Gravity Models and Logit Functions

- 6.32. A gravity model can be used to describe the propensity of a journey to be made between an origin and a destination, based on the costs associated with the travel between these locations. These costs could, for example, be based on time, distance or a combination of the two.
- 6.33. Gravity models attempt to describe a trip distribution based on very limited data they do not provide an accurate trip matrix, but the information can be used to inform a prior matrix that provides a good starting point for the Matrix Estimation process that takes observed traffic counts into account.

6.34. For this study, a gravity model has been developed for each user class based on distance costs. A profile of the length of car trips in the study area was ascertained from the RSI data, and this was used to inform the gravity model. In this case, the gravity model used the following logit function:

$$F(C_{ij}) = C_{ij}^{X_1} \exp(X_2 C_{ij})$$

Where:

 $F(C_{ii}) = cost deterrence for zone i to zone j;$

 C_{ii} = distance cost for zone i to zone j; and

 X_1 and X_2 = coefficients to be calibrated.

6.35. Logit functions were developed by user class and time periods, and an example of the calibrated logit function for UC1 (HBW) for the AM peak is shown in Figure 6.2.

Figure 6.2 – Calibration of the Logit Function for AM Peak UC1 (HBW)

6.36. Figure 6.2 shows that 100% of the UC1 (HBW) trips are greater than 0km (as expected); approximately 80% of trips are greater than 2km; approximately 60% of the trips are greater than 5km and so on.

User Class 2 HBEd Trips

- 6.37. 2010 education trip data (by MATS zones) was provided by CCC, which gives home to school journey data for all state funded schools in March, and also for pupils who live in March but go to school outside of March. The data was provided by mode, and all trips by car have been extracted and used for infilling.
- 6.38. To divide the education trip data into the modelled time periods, proportion of home to school and school to home trips was calculated from the RSI data. Table 6.9 below shows the proportion of home to school and school to home trips for each modelled time period.

Table 6.9 – Proportion of Home to School and School to Home Trips

	AM	IP	РМ
Home to School	70%	-	-
School to Home	-	6%	28%

- 6.39. By multiplying the full home to school and school to home (by transposition) matrices to the proportions shown in Table 6.9, matrices by time period were created, and finally, adding the two outbound and return matrices together, the full bi-directional synthetic data for UC2 (HBEd) was created.
- 6.40. Similar to the other user classes, only partially observed and unobserved movements would be infilled with this synthetic data.

OGV1 and OGV2 Trip Infilling

- 6.41. As discussed in Chapter 3 of the MATS Data Collection Report, there is a lack of interview data for OGV1 and OGV2 for RSI Site R-5 and Site R-6. Although the process discussed above provides synthetic data for OGV1 and OGV2, it is believed that the OGV1 and OGV2 interview data from the Wisbech Area Transport Study (WATS) which has also been made available for this study is likely to provide more accurate origin/destination data for these two user classes.
- 6.42. This is due to the fact that the greater number of samples from the Wisbech data is more likely to accurately represent the full pattern on HGV movements at these locations. A small sample rate can lead to a 'lumpy' distribution, whereby the numbers of trips counted at the ATC sites adjacent to the RSI sites are distributed over only a few origin/destination pairs. By using the Wisbech data that had a higher sample rate, it was possible to gain a more accurate representation of the origin/destination movements in the area.
- 6.43. Similar to the RSI data for this study, the origin and destination data taken from WATS has been put into MATS zone, and the interviews that are expected to pass through the MATS study area have been extracted. Due to the locations of the WATS RSI sites, only the trips that use the A141 were deemed to be appropriate to be used for this study.
- 6.44. To factor the WATS interview data (i.e. 2008) to MATS flow level (i.e. 2010), the turning count for A141/A605 (TC-12) was used to calculate the expansion factors. As it was deemed that the synthetic data created from the WATS RSI data is likely to be more accurate than the gravity models, for all origin/destination zone pairs that WATS RSI surveys captured, the synthetic data were replaced with the WATS data.

Compiling the Synthetic Matrices

- 6.45. Paragraph 6.29 to Paragraph 6.44 above describes the process used to create the synthetic matrices. Figure 6.3 below is a flow chart summarising the key steps for compiling the full synthetic matrices.
- 6.46. Table 6.10 below shows the matrix totals after each of the key synthetic matrix development processes. The data is presented by user class to clearly show the impact of each step.

	Synthetic Data from the Gravity Models		After Infilling with CCC Education Trip Data			After Infilling with WATS Data			
	AM	IP	РМ	AM	IP	PM	AM	IP	РМ
UC1 HBW	505	204	586	505	204	586	505	204	586
UC2 HBEd	-	-	-	338	28	133	338	28	133
UC3 EB	179	177	135	179	177	135	179	177	135
UC4 OTP	413	628	740	413	628	740	416	628	740
UC5 OGV1	86	84	51	86	84	51	159	151	63
UC6 OGV2	72	89	68	72	89	68	225	280	207
TOTAL	1,255	1,182	1,580	1,593	1,210	1,713	1,822	1,468	1,864

Table 6.10 – Matrix Totals (Full Synthetic)

Figure 6.3 – Synthetic Matrix Build Process

Compiling the Full Prior Matrices

- 6.47. The paragraphs above describe the steps that were taken to generate the observed and synthetic matrices for each user class and time period. As has been noted, these matrices have been created in such a way that the observed matrices contain only the observed movements and a portion of the partially observed movements, and the synthetic matrices contain only the unobserved movements and the other portion of the partially observed movements. Therefore these two components can simply be added together to produce the final full prior matrices.
- 6.48. Table 6.11 below shows the matrix totals for the prior matrices and the proportion of the observed and synthetic components, and Table 6.12 to Table 6.14 shows the proportion of the observed component of the prior matrices by the MATS sector system (See Appendix B for sector plan). The composition of observed and synthetic data of the prior matrices is generally consistent for all three modelled time periods, suggesting that the demand matrix development process adopted is robust. The percentage of synthetic data within the matrix is also comparable to the WATS model, which comprised of 31%, 30% and 29% synthetic trips for the AM, Inter and PM peak periods respectively.

Table 6.11 – Matrix Totals (Prior)

	AM	IP	PM
Observed	3,879 (68%)	3,194 (69%)	4,291 (70%)
Synthetic	1,822 (32%)	1,468 (31%)	1,864 (30%)
Prior Matrix	5,701 (100%)	4,662 (100%)	6,155 (100%)

- 6.49. Table 6.12 to Table 6.14 shows that a high proportion of the trips from external areas (i.e. Sector 4 to Sector 8) to March (i.e. Sector 1 to Sector 3) are made up of observed data. For the March internal to internal movements (i.e. movements between Sector 1, 2 and 3) and external to external movements (i.e. movements between Sector 4, 5, 6, 7 and 8), a larger proportion of the trips were synthesised. Due to the location of the RSI survey sites, this combination of observed and synthetic data is reasonable and the prior matrices are considered to be acceptable.
- 6.50. Select Link Analysis for all RSI links were also undertaken to ensure that the traffic flows for these links remain fairly consistent between the prior and post ME2 assignments. Table 6.15 shows the results from the Select Link Analysis. All flow data is presented as 2-way combined flow, for Site R-6, the total junction arrive flow is presented rather than individual entry arms.
- 6.51. Table 6.15 shows that for all RSI sites with 2-way flow less than 1,000 PCU (i.e. Site R-1, R-2 & R-3), the flow difference between the prior and post ME2 assignment is less than 50 PCU for all RSI sites and time periods.
- 6.52. For RSI sites with higher flow (greater than 1,000 PCU) (i.e. Site R-3 & R-5), the absolute flow difference between the prior and post ME2 assignment is greater, as might be expected, but the percentage differences remain reasonably low, between 2% and 7% for all time periods.

Table 6.12 – Sector to Sector Analysis: Proportion of Observed Data (AM)

	1	2	3	4	5	6	7	8	Total
1	17%	82%	91%	82%	100%	82%	89%	79%	72%
2	74%	51%	35%	93%	100%	88%	96%	98%	75%
3	72%	51%	22%	70%	100%	55%	49%	43%	51%
4	91%	97%	95%	34%	100%	89%	86%	64%	73%
5	98%	100%	99%	100%	0%	54%	100%	100%	87%
6	90%	92%	73%	58%	74%	2%	38%	77%	63%
7	95%	95%	72%	61%	100%	39%	100%	100%	78%
8	95%	97%	89%	42%	100%	36%	100%	100%	68%
Total	74%	75%	64%	59%	96%	56%	77%	74%	68%

Table 6.13 – Sector to Sector Analysis: Proportion of Observed Data (IP)

	1	2	3	4	5	6	7	8	Total
1	27%	86%	83%	82%	99%	84%	86%	84%	78%
2	86%	66%	73%	74%	100%	94%	92%	95%	82%
3	84%	71%	32%	77%	99%	66%	53%	79%	66%
4	82%	79%	77%	46%	100%	77%	70%	28%	63%
5	99%	100%	99%	100%	100%	71%	100%	100%	92%
6	85%	94%	68%	75%	72%	0%	31%	24%	59%
7	87%	93%	56%	69%	100%	33%	100%	100%	72%
8	82%	95%	80%	28%	100%	22%	100%	100%	61%
Total	78%	82%	67%	62%	93%	58%	71%	62%	69%

Table 6.14 – Sector to Sector Analysis: Proportion of Observed Data (PM)

	1	2	3	4	5	6	7	8	Total
1	13%	82%	80%	90%	96%	88%	95%	96%	78%
2	86%	72%	60%	97%	100%	94%	97%	99%	84%
3	90%	49%	38%	91%	100%	72%	70%	90%	69%
4	83%	93%	67%	27%	100%	55%	55%	47%	57%
5	100%	100%	100%	100%	0%	69%	100%	100%	95%
6	76%	87%	50%	85%	37%	1%	52%	35%	54%
7	87%	97%	45%	81%	100%	45%	100%	100%	74%
8	89%	99%	58%	55%	100%	54%	100%	100%	77%
Total	77%	83%	57%	66%	86%	61%	76%	73%	70%

	RSI Site	Prior	Post ME2	Diff	% Diff
AM	R-1	442	460	17	3.9%
	R-2	197	212	15	7.5%
	R-3	942	918	-24	-2.6%
	R-5	1,796	1,683	-113	-6.3%
	R-6	1,266	1,299	33	2.6%
IP	R-1	291	319	27	9.4%
	R-2	196	225	30	15.1%
	R-3	806	788	-18	-2.3%
	R-5	1,481	1,412	-69	-4.7%
	R-6	1,148	1,211	63	5.5%
PM	R-1	495	516	21	4.3%
	R-2	219	262	44	20.0%
	R-3	969	980	11	1.1%
	R-5	1,855	1,754	-101	-5.4%
	R-6	1,448	1,506	58	4.0%

Table 6.15 – Select Link Analysis

7. Highway Model – Calibration and Validation Procedures

This chapter outlines the procedures and the acceptability guidelines for the highway model.

Highway Model – Calibration and Validation Procedures

- 7.1. Model calibration refers to the process of adjusting and confirming values of the various parameters in the network, and correcting origin/destination movements in the trip matrices, as necessary to improve the performance for the model. This is achieved by making use of the various data collected during the study.
- 7.2. Model validation seeks to demonstrate that the calibrated model correctly reproduces observed conditions when applied in the base year situation. Ideally, it should make use of the data which is not used directly in the model calibration.

Data Utilised

- 7.3. During the calibration and validation of the model, the following data sources were used:
 - RSI MCC survey data;
 - MCTC survey data;
 - Journey time survey data;
 - Queue length survey data
 - TrafficMaster speed data;
 - CCC traffic signal data; and
 - Highway network inventory surveys.

Calibration Counts and Matrix Estimation

7.4. All counts that had not been designated as validation counts were used within the Matrix Estimation by Maximum Entropy (ME2) process to calibrate the model, by inclusion in the SATURN 77777 card. These counts are shown below in Table 7.1, with the location of these counts shown in Figure 7.1.

Table 7.1 – MATS Calibration Counts

Site ID	Location	Count Type	Date	Source
E-2	Norwood Road	MCC	19/10/2010	CCC Annual Town Monitoring
E-3	Elm Road	MCC	19/10/2010	CCC Annual Town Monitoring
E-4	Creek Road	MCC	19/10/2010	CCC Annual Town Monitoring
R-4	A141 Isle of Ely Way	RSI MCC (factored)	21/10/2010	SkyHigh 2010
TC-1	B1101 Elm Road/Estover Road/Norwood Road	MCTC	21/10/2010	SkyHigh 2010
TC-4	A141/Manea Road	MCTC	21/10/2010	SkyHigh 2010
TC-5	A141/King Street	MCTC	21/10/2010	SkyHigh 2010
TC-6	A141/B1101 Wimblington Road	MCTC	14/10/2010	SkyHigh 2010
TC-7	B1101 Wimblington Road/Jobs Lane	MCTC	21/10/2010	SkyHigh 2010

Site ID	Location	Count Type	Date	Source
TC-9	A141/Burrowmoor Road	MCTC	21/10/2010	SkyHigh 2010
TC-10	A141/Gaul Road	MCTC	21/10/2010	SkyHigh 2010
TC-11	A141/B1099 Wisbech Road	MCTC	14/10/2010	SkyHigh 2010
TC-12	A141/A605	MCTC	21/10/2010	SkyHigh 2010
TC-14	B1101 High Street/St Peters road	MCTC	14/10/2010	SkyHigh 2010
TC-15	A141/Hostmoor Avenue	MCTC	21/10/2010	SkyHigh 2010
TC-16	A141/B1093 Doddington Road	MCTC	21/10/2010	SkyHigh 2010
TC-17	B1101 Elm Road/Twenty Foot Road	MCTC	21/10/2010	SkyHigh 2010
TC-18	B1101 Station Road/County Road	MCTC	14/10/2010	SkyHigh 2010
TC-19	B1099 Wisbech Road/Norwood Road	MCTC	14/10/2010	SkyHigh 2010
TC-20	B1101 Station Road/Creek Road	MCTC	21/10/2010	SkyHigh 2010
TC-22	B1101 High Street/Elwyn Road/Market Place	MCTC	21/10/2010	SkyHigh 2010
TC-25	Hundreds Road/Melbourne Avenue	MCTC	21/10/2010	SkyHigh 2010
TC-27	Burrowmoor Road/Gaul Road	MCTC	21/10/2010	SkyHigh 2010

Assignment Parameters

7.5. Model assignments were carried out using the Origin Based Assignment (OBA) procedure. The OBA procedure provides the most accurate solutions for the Wardrop User Equilibrium, which is used to govern the assignment of traffic to the network. It seeks to minimise the generalised cost along each path for each trip, where generalised cost can be defined as below:

Generalised cost = βx time + αx distance

- 7.6. Further details of these parameters can be found in Chapter 4.
- 7.7. One distinct advantage of the OBA procedure is a reduced amount of model noise, enabling greater detail to be sought in comparing small changes to either the network or demand.

Model Convergence Guidelines

- 7.8. The following guidance was applied to the convergence of the model.
- 7.9. The DMRB (Volume 12 Section 2 Part 1 Traffic Appraisal in Urban Areas) defines 'Gap' as the measure of convergence between the final SATASS/SATSIM loop. It is the difference between costs on the assigned routes and those along the minimum cost routes, as a percentage of the cost routes.
- 7.10. In addition to this, DMRB advice recommends the following criteria for Wardrop User Equilibrium assignment to ensure a satisfactory model convergence:
 - Delta' is the measure of convergence of the final assignment to ensure that the alternative routes used in the assignment process do not differ significantly from the final minimum cost. It is the difference between costs on the various multiple assigned routes and those along the final minimum cost routes, as a percentage of the minimum cost routes. Its value should be less than 1%.
 - Flow Change Stability (P) is the measure of convergence of assignment-simulation loops. It is the percentage of links where assigned flows change by less than 5% between successive assignment simulation loops. Assignment model iterations should continue until at least four successive values of 'P' greater than 90% have been obtained.
 - 'Gap' is the measure of convergence between the final SATASS/SATSIM loop. It is the difference between costs on the assigned routes and those along the minimum cost routes, as a percentage of the cost routes. A value of less than 0.25% is recommended.
- 7.11. Emerging guidance from the SATURN developers suggests that a more stringent convergence of the Flow Change Stability would be advantageous, with a 'P' value of 99% or more for four consecutive iterations. As such, the MATS model has been set to adhere to this stringent criterion, which should easily be met for a model of this size.

Calibration Procedure

- 7.12. The calibration procedure involved a number of tasks, all of which were designed to ensure that the model adequately reproduces observed traffic flows and travel times in the study area. These tasks included:
 - The verification of speed flow curves in the model to represent the operation conditions of the road network;
 - Checking junction capacities and gap acceptance values to represent typical operating conditions;
 - Ensuring that the traffic counts used within the model are valid and do not conflict with adjacent counts, and are representative of normal traffic conditions;
 - Correlating the observed delay and congestion points with the modelled;
 - Use of Matrix Estimation process (ME2) to best 'fit' the prior demand matrices to
 observed traffic flows on the study area cordon and observed links and turning flows
 within the study area.

Speed Flow Curves

7.13. In SATURN, delays and queues in the simulation network occur at junctions. Speed flow curves can also be allocated to simulation links in order to represent delays due to road conditions. Speed flow curves within simulation network have only been applied to non-urban links outside the built up area where junction capacity and delay are not the dominant capacity determinant. In the buffer network, delays and queues result only from speed flow curves assigned to the links. The speed flow curves that have been used in this model are presented in Table 5.1.

Model Validation

7.14. During the latter stages of the model development, validation checks were also incorporated into the processing of the model output data. This primarily consisted of comparing observed and assigned link flows, and journey times along the specified routes. The validation comparison criteria used the guidelines as set out in the DMRB.

Assignment Acceptability Guidelines

- 7.15. The traffic flow assignment acceptability guidelines are set out in the DMRB. These are reproduced in Table 7.2.
- 7.16. The observed flow and screenline flow criteria in Table 7.2 related to total flows, i.e. all vehicles, and should not be used when comparing partial link flows, e.g. by vehicle classification.

Table 7.2 – DMRB Assignment Acceptability Guidelines

Criteria Measures	Acceptability Guideline
Assigned hourly flows compared with observed flows	
Individual flows within 100 vehicles per hour (vph) for flows <700 vph	At least 85% of cases
Individual flows within 15% for flows 700-2,700 vph	At least 85% of cases
Individual flows within 400 vph flow flows >2,700 vph	At least 85% of cases
Total Screenline flows (normally >5 links) to be within 5%	All (or nearly all) screenlines
GEH Statistic: Individual flows GEH < 5	At least 85% of cases
GEH Statistic: Screenline totals GEH < 4	All (or nearly all) screenlines
Modelled journey times compared with observed journey times	
Total journey times within 15% (or 1-minute if higher)	At least 85% of routes

The GEH Statistic

7.17. The GEH (Geoffrey E Havers) Statistic included in Table 7.2 above is a generally accepted value used as an indicator of 'goodness of fit', i.e. the extent to which modelled flows match corresponding observed values. The GEH Statistic is a form of chi-square statistic. It is described in the DMRB (Volume 12 Section 2 Part 1 Traffic Appraisal in Urban Areas). It is defined as:

$$GEH = \sqrt{\frac{(M-C)^2}{\frac{1}{2}(M+C)}}$$

Where:

M = modelled flow; and

C = observed flow (or count).

7.18. Based on the DMRB guidance, a GEH value of less than 5 indicates a satisfactory fit between independent observed counts and modelled flows. For screenlines or other combinations of links, a GEH value of 4 or less per screenline is required in all or nearly all cases.

Validation Count List

7.19. A set of counts were used as an independent validation check of the model. These counts did not form part of the SATURN 77777 card. Table 7.3 lists the validation counts and Figure 7.1 shows the validation count locations.

Table 7.3 – MATS Validation Counts

Site ID	Location	Count Type	Date	Source
E-1	Wisbech Rd	MCC	19/10/2010	CCC Annual Town Monitoring
E-5	Upwell Rd	MCC	19/10/2010	CCC Annual Town Monitoring
E-7	Knights End Rd	MCC	19/10/2010	CCC Annual Town Monitoring
E-8	Burrowmoor Rd	MCC	19/10/2010	CCC Annual Town Monitoring
E-9	Gaul Rd	MCC	19/10/2010	CCC Annual Town Monitoring
E-10	A141 March Bypass	MCC	19/10/2010	CCC Annual Town Monitoring
E-11	Town Bridge	MCC	19/10/2010	CCC Annual Town Monitoring
R-1	B1101 Elm Rd	RSI MCC (factored)	12/10/2010	SkyHigh 2010
R-2	B1099 Upwell Rd	RSI MCC (factored)	19/10/2010	SkyHigh 2010
R-3	B1101 Wimblington Rd	RSI MCC (factored)	19/10/2010	SkyHigh 2010
R-5	A141 Wisbech Rd	RSI MCC (factored)	12/10/2010	SkyHigh 2010
TC-8	A141/Knights End Rd	MCTC	14/10/2010	SkyHigh 2010
TC-13	B1101 High St/Burrowmoor Rd	MCTC	21/10/2010	SkyHigh 2010
TC-21	B1101 Broad St/B1099 Dartford Rd/B1101 Station Rd	MCTC	21/10/2010	SkyHigh 2010
TC-22	B1101 High St/Elwyn Rd/Market Pl	MCTC	21/10/2010	SkyHigh 2010
TC-23	B1099 Upwell Rd/Elwyn Rd	MCTC	21/10/2010	SkyHigh 2010
TC-24	Hundreds Rd/Norwood Rd	MCTC	21/10/2010	SkyHigh 2010
TC-26	Estover Rd/Creek Rd	MCTC	21/10/2010	SkyHigh 2010
LC-1	B1101 Station Rd Level Crossing	LC MCC	14/10/2010	SkyHigh 2010

Figure 7.1 – MATS Screenline, Calibration and Validation Count Locations

Analysis of Journey Time Survey Data

7.20. A series of journey time surveys were undertaken for this study, as described in Chapter 3. Table 7.4 below highlights the number of observed runs that were used to obtain the average journey time. Surveys that were undertaken between 0730 and 0930 were used for the AM peak hour, between 1000 and 1600 were used for the Inter peak hour, and between 1630 and 1830 were used for the PM peak hour. Anomalous results were removed along with any data that was recorded outside these time frames.

Table 7.4 – Number of Journey Times Used

Journey Time Route	AM	IP	РМ
Pink Route NB	5	10	5
Pink Route SB	5	10	5
Blue Route EB	5	10	5
Blue Route WB	4	10	5
Green Route NB	7	15	7
Green Route SB	7	15	7
Red Route NB	4	10	5
Red Route SB	4	10	5

7.21. In addition to the routes above, a further route was created by combining data for the Blue, Green and Red routes between St Peters Road and Dartford Road. This enabled a much more thorough check on the journey time of this section of road to be performed to ensure greater accuracy on this particular link within the town centre. The table below highlights the number of runs used for the additional black route.

Table 7.5 – Number of Journey Times Used – Additional Black Route

Journey Time Route	AM	IP	РМ
Black Route NB	16	35	17
Black Route SB	16	35	17

- 7.22. It is important to check the data and discard anomalous runs, as these can have a significant effect on the calculated average value, as demonstrated in Figure 7.2, showing data from the Red Route NB for the AM peak hour. Run 4 from the first graph was deemed anomalous, since the delay shown here was not observed at any of the other survey runs throughout the day. This anomaly could be due to an error in the data recording, or a specific set of traffic conditions that are not representative of the average conditions being modelled.
- 7.23. Once the anomalous run has been removed from the calculations, the average journey time changes from 12 minutes and 20 seconds to 11 minutes and 17 seconds, and the reduced variability can be seen across the data.

Figure 7.2 – Red Route NB AM Peak Hour Journey Time Including Anomalous Data

Figure 7.3 – Red Route NB AM Peak Hour Journey Time with Anomalous Data Removed

8. Highway Model – Calibration and Validation Results

The performance of base year MATS SATURN highway model has been assessed against a number of benchmarks to ensure it provides a satisfactory replication of existing traffic conditions.

Highway Model – Calibration and Validation Results

8.1. This chapter presents the results of the calibration and validation exercises undertaken for each of the three modelled time periods: AM, inter and PM peak. The performance of each time period has been assessed against a number of benchmarks.

Prior Assignment Summary

- 8.2. Initial assignments of the matrices were undertaken without running the ME2 process. Basic assignment information such as trip length distribution and matrix totals were collected from the prior assignments for comparison against post ME2 assignments.
- 8.3. A comparison of the matrix totals for the prior and post ME2 assignment will indicate the impact of the calibration traffic counts on the matrices and the assignment; and the trip length distributions for the prior and post ME2 assignments were checked to ensure the proportion of trips in each distance band remains fairly stable between the prior and final matrices.
- 8.4. A check against the DMRB Assignment Acceptability Guidelines for the prior assignment was also undertaken. This indicated that 93%, 96% and 97% of validation counts pass DMRB flow criteria in the AM, inter and PM peak hours respectively, while 75%, 72% and 74% of validation counts have a GEH of less than 5. In terms of journey time routes, 100% of the AM peak, 100% of the Inter peak and 100% of the PM peak journey time routes pass the DMRB validation criteria.
- 8.5. It should be noted that it is not a requirement for the prior assignment to meet the DMRB acceptability guidelines, but these figures have been included here for reference only.

Post ME2 Assignment Summary

- 8.6. Chapter 6 of this report describes the process of building the prior matrices, from observed and synthetic data. Whilst every effort has been made to ensure these are as accurate as possible, it is acknowledged that the observed data was not available to inform all movements, and the synthetic data is only an 'initial estimate'. Therefore, the ME2 procedure has been used within SATURN to better inform the synthetic component of the demand matrices, using count data as a basis.
- 8.7. The SATURN Matrix Estimation process has been set up to complete four iterations of the SATPIJA, SATME2 and assignment loop. Within each iteration, SATPIJA and SATME2 are run on each vehicle type separately. To facilitate this, the count data has been split into the relevant vehicle types, namely light vehicles (i.e. Cars & LGV), OGV1 and OGV2.

Observed and Assigned Traffic Flow Comparisons

- 8.8. The final validated assignment was compared against observed traffic flows at all sites along the five screenlines, one cordon and six additional count sites that did not form part of either a screenline or cordon.
- 8.9. A summary of the outputs for the screenlines and cordon (Table 8.1 to Table 8.6) are presented below, and full details of these and the six additional sites can be found within Appendix A.
- 8.10. A check against the DMRB Acceptability Guidelines indicate that in the final validation assignments, out of all validation counts from the screenlines, cordon, and six additional sites, all three modelled time periods exceeded the criteria of 85% of counts having a GEH of less than 5, and 85% of counts passing the DMRB flow criteria.
- 8.11. Within the AM peak model, 97% of counts have a GEH of less than 5 and 87% of counts pass the DMRB flow criteria.

- 8.12. Within the Inter peak model, 97% of counts have a GEH of less than 5 and 86% of counts pass the DMRB flow criteria.
- 8.13. Within the PM peak model, 100% of counts have a GEH of less than 5 and 88% of counts pass the DMRB flow criteria.

Screenline		Total Screenline Flow from Count Data	Assigned Modelled Flow	Diff	%Diff	GEH	DMRB Flow	DMRB GEH
	Eastern Screenline	355	347	8	2%	0.4	~	\checkmark
alidation	Southern Screenline	2162	2231	-69	-3%	1.5	~	\checkmark
	Western Screenline	1614	1621	-7	0%	0.2	~	\checkmark
>	River Screenline	2842	2787	55	2%	1.0	\checkmark	\checkmark
ç	Northern Screenline	2362	2402	-40	-2%	0.8	\checkmark	\checkmark
ratio	March Inner Cordon	4015	3976	39	1%	0.6	\checkmark	\checkmark
Calib	Wimblington Screenline	717	696	21	3%	0.8	~	\checkmark

Table 8.1 – AM Peak Final Assignment Screenline and Cordon Summary

Table 8.2 – AM Peak Count Validation Summary

Number of Validation Counts	Number Passing DMRB Flow	% Passing	Number Passing DMRB GEH	% Passing	DMRB Flow	DMRB GEH
69	67	97%	60	87%	\checkmark	\checkmark

Table 8.3 – Inter Peak Final Assignment Screenline and Cordon Summary

Screenline		Total Screenline Flow from Count Data	Assigned Modelled Flow	Diff	%Diff	GEH	DMRB Flow	DMRB GEH
Validation	Eastern Screenline	327	358	-32	-10%	1.7	×	\checkmark
	Southern Screenline	1690	1837	-147	-9%	3.5	×	\checkmark
	Western Screenline	1228	1187	40	3%	1.2	\checkmark	\checkmark
	River Screenline	2362	2363	-1	0%	0.0	\checkmark	\checkmark
Calibration	Northern Screenline	1804	1994	-190	-11%	4.4	×	×
	March Inner Cordon	3520	3368	152	4%	2.6	\checkmark	\checkmark
	Wimblington Screenline	654	634	19	3%	0.8	~	~

Number of Validation Counts	Number Passing DMRB Flow	% Passing	Number Passing DMRB GEH	% Passing	DMRB Flow	DMRB GEH
69	67	97%	60	87%	\checkmark	\checkmark

Table 8.5 – PM Peak Final Assignment Screenline and Cordon Summary

Screenline		Total Screenline Flow from Count Data	Assigned Modelled Flow	Diff	%Diff	GEH	DMRB Flow	DMRB Geh
Validation	Eastern Screenline	419	416	4	1%	0.2	~	\checkmark
	Southern Screenline	2415	2426	-11	0%	0.2	\checkmark	\checkmark
	Western Screenline	1546	1559	-13	-1%	0.3	\checkmark	\checkmark
	River Screenline	2985	3077	-92	-3%	1.7	\checkmark	\checkmark
Calibration	Northern Screenline	2405	2424	-19	-1%	0.4	\checkmark	\checkmark
	March Inner Cordon	4207	4219	-12	0%	0.2	\checkmark	\checkmark
	Wimblington Screenline	845	823	22	3%	0.8	~	\checkmark

Table 8.6 – PM Peak Count Validation Summary

_

Number of Validation Counts	Number Passing DMRB Flow	% Passing	Number Passing DMRB GEH	% Passing	DMRB Flow	DMRB GEH
69	69	100%	60	87%	\checkmark	\checkmark

8.14. Figure 8.1 to Figure 8.3 shows the 'goodness of fit', using GEH values, between the observed and modelled flow data in graphical format for the AM, inter and PM peak model respectively.

Figure 8.1 – Count Calibration/Validation Overview (AM)

Figure 8.2 – Count Calibration/Validation Overview (IP)

Journey Time Comparisons

- 8.15. A graphical summary of the overall modelled and observed journey time comparison for each route in the AM peak along with indicators of a 15% error bar is shown in Figure 8.4. Figure 8.5 shows a summary of the Inter peak journey times, while Figure 8.6 shows the same summary for the PM peak. Detailed comparisons between the observed and modelled journey times for all three time periods against the upper and lower 95% confidence intervals of the observed times are produced within Appendix A.
- 8.16. The results in Table 8.7 to Table 8.9 show that the modelled journey times in all three time periods meet with the DMRB validation criteria in all cases. The criterion is for the difference between the modelled and the mean observed journey times to be less than 15% or 1 minute.

Figure 8.4 – AM Peak Final Assignment Journey Time Summary

Table 8.7 – AM Peak Final Assignment Journey Time Summary

Route	Mean Observed Time (hh:mm:ss)	Modelled Time (hh:mm:ss)	Diff (hh:mm:ss)	% Diff	DMRB Criteria
Pink Route NB	00:09:15	00:09:24	00:00:09	2%	~
Pink Route SB	00:08:46	00:09:41	00:00:55	9%	\checkmark
Blue Route EB	00:12:57	00:11:28	00:01:29	-13%	\checkmark
Blue Route WB	00:12:14	00:11:26	00:00:48	-7%	\checkmark
Green Route NB	00:07:22	00:07:18	00:00:04	-1%	\checkmark
Green Route SB	00:08:06	00:07:58	80:00:00	-2%	\checkmark
Red Route NB	00:11:17	00:10:56	00:00:21	-3%	\checkmark
Red Route SB	00:11:22	00:10:54	00:00:28	-4%	\checkmark
Black Route NB	00:02:17	00:02:07	00:00:10	-8%	\checkmark
Black Route SB	00:02:11	00:02:08	00:00:03	-2%	\checkmark

Table 8.8 – Inter Peak Final Assignment Journey Time Summary

Route	Mean Observed Time (hh:mm:ss)	Modelled Time (hh:mm:ss)	Diff (hh:mm:ss)	% Diff	DMRB Criteria
Pink Route NB	00:10:38	00:09:30	00:01:08	-12%	\checkmark
Pink Route SB	00:09:33	00:09:01	00:00:32	-6%	\checkmark
Blue Route EB	00:11:34	00:11:03	00:00:31	-5%	\checkmark
Blue Route WB	00:11:58	00:11:21	00:00:37	-5%	\checkmark
Green Route NB	00:07:06	00:07:08	00:00:02	0%	\checkmark
Green Route SB	00:07:23	00:07:33	00:00:11	2%	\checkmark
Red Route NB	00:11:41	00:10:56	00:00:45	-7%	\checkmark
Red Route SB	00:11:07	00:10:42	00:00:25	-4%	\checkmark
Black Route NB	00:02:50	00:02:03	00:00:47	-38%	\checkmark
Black Route SB	00:02:01	00:01:57	00:00:04	-3%	\checkmark

Figure 8.6 – PM Peak Final Assignment Journey Time Summary

Table 8.9 – PM Peak Final Assignment Journey Time Summary

Route	Mean Observed Time (hh:mm:ss)	Modelled Time (hh:mm:ss)	Diff (hh:mm:ss)	% Diff	DMRB Criteria
Pink Route NB	00:09:24	00:10:14	00:00:50	8%	~
Pink Route SB	00:08:52	00:09:35	00:00:43	8%	\checkmark
Blue Route EB	00:12:14	00:11:35	00:00:39	-6%	\checkmark
Blue Route WB	00:11:12	00:11:38	00:00:26	4%	\checkmark
Green Route NB	00:07:08	00:07:20	00:00:12	3%	\checkmark
Green Route SB	00:07:32	00:08:06	00:00:34	7%	\checkmark
Red Route NB	00:11:51	00:11:28	00:00:23	-3%	\checkmark
Red Route SB	00:11:03	00:11:06	00:00:03	0%	\checkmark
Black Route NB	00:02:26	00:02:11	00:00:15	-11%	~
Black Route SB	00:02:01	00:02:05	00:00:04	3%	✓

Prior and Post ME2 Matrix Comparisons

- 8.17. At the end of the Matrix Estimation process, the prior and post ME2 matrices have been compared. Table 8.10 below shows the change in total matrix size between the prior and post ME2 matrices and Table 8.11 to Table 8.13 show the matrix change at the MATS 8 sector level for all modelled time periods.
- 8.18. Table 8.11 to Table 8.13 show that the most significant sector to sector movement change due to the ME2 process are generally intra-sectoral movements (i.e. Sector 1 to Sector 1 & Sector 4 to Sector 4). The demand data for these movements are generally synthesised, therefore it is expected the ME2 process would adjusted these movements.
- 8.19. For movements between the external areas (i.e. Sector 4 to Sector 8) and March (i.e. Sector 1 to Sector 3), the demand data have remained reasonably consistent between the prior and post ME2 matrices as these movements have mostly been captured by the RSI surveys. It should be noted that part of Sector 4 to March movements were unobserved, namely Hostmoor Avenue Industrial Estate and Whitemoor Prison to/from March Town Centre, therefore the prior and post ME2 matrix differences between Sector 4 and March are generally greater than the other external sectors to/from March movements.

Time Period Prior Matrix Total Post ME2 Matrix Total

Table 8.10 – Prior and Post ME2 Matrix Total Comparison

AM	5,701	6,420	719 (13%)	
IP	4,662	5,306	644 (14%)	
PM	6,155	6,912	758 (12%)	

Difference

Table 8.11 – Prior and Post ME2 Sector Matrix Difference (AM)

	1	2	3	4	5	6	7	8	Total
1	139	6	85	57	0	13	-4	-7	289
2	41	-1	64	28	0	-23	2	0	111
3	40	2	156	80	0	4	-60	-57	166
4	21	-1	7	186	0	77	23	6	318
5	0	0	0	0	0	-7	0	0	-8
6	30	-9	-2	25	-2	-3	-44	-28	-33
7	-2	1	-6	-16	0	7	0	0	-16
8	-2	0	-2	-39	0	-65	0	0	-108
Total	267	-2	302	321	-2	3	-83	-87	719

Table 8.12 – Prior and Post ME2 Sector Matrix Difference (IP)

	1	2	3	4	5	6	7	8	Total
1	95	57	44	108	0	8	-12	-11	290
2	54	2	48	0	0	-13	-1	-1	90
3	31	21	33	32	0	51	-40	-14	113
4	108	-1	25	77	0	77	-11	-13	262
5	0	0	0	0	0	-3	0	0	-4
6	1	-13	35	91	-3	3	-14	-48	51
7	-11	-1	-38	-13	0	-5	0	0	-69
8	-9	-1	-16	-17	0	-47	0	0	-90
Total	268	64	132	278	-4	71	-78	-87	644

Table 8.13 - Prior and Post ME2 Sector Matrix Difference (PM)

	1	2	3	4	5	6	7	8	Total
1	62	6	63	27	0	4	-3	-2	156
2	27	0	44	9	0	-12	1	-1	68
3	9	46	9	17	1	35	-22	-9	85
4	102	7	47	189	0	137	-34	-38	410
5	0	0	0	0	0	-1	0	0	-1
6	-7	-1	38	98	-6	6	-24	-47	58
7	-6	-2	-29	62	0	-34	0	0	-9
8	-5	-1	-25	20	0	2	0	0	-10
Total	182	55	147	421	-5	137	-83	-96	758

Trip Length Distribution

- 8.20. The figures below show the change in the trip length distribution between the Prior and Post ME2 assignments.
- 8.21. These graphs indicate that the proportion of trips in each distance band remains very stable between the prior and final matrix in all three time periods. There is a correlation of 98% in the AM peak, 97% in the Inter peak, and 98% in the PM peak.

Figure 8.7 – AM Peak Trip Length Distribution Changes

Figure 8.8 – Inter Peak Trip Length Distribution Changes

Model Convergence

8.22. The following tables show the convergence criteria for the final five loops of the convergence process, monitoring all of the criteria mentioned in paragraphs 7.8 to 7.11.

Loop	Gap (%)	Delta (%/Number of Loops)	Flow Change Stability (%)
8	0.00008	0.000 / 7	99.3
9	0.00004	0.000 / 7	99.3
10	0.00003	0.000 / 7	99.4
11	0.00001	0.000 / 7	99.8
12	0.00003	0.000 / 7	99.7

Table 8.14 – AM Peak Model Convergence Criteria

Table 8.15 – Inter Peak Model Convergence Criteria

Loop	Gap (%)	Delta (%/Number of Loops)	Flow Change Stability (%)
4	0.00044	0.000 / 7	98.8
5	0.00024	0.000 / 7	99.6
6	0.00014	0.000 / 7	99.6
7	0.00013	0.000 / 7	99.6
8	0.00013	0.000 / 7	99.6

Table 8.16 – PM Peak Model Convergence Criteria

Loop	Gap (%)	Delta (%/Number of Loops)	Flow Change Stability (%)
8	0.0015	0.000 / 7	98.8
9	0.00035	0.000 / 7	99.0
10	0.00020	0.000 / 7	99.8
11	0.00017	0.000 / 7	99.7
12	0.00013	0.000 / 7	99.9

8.23. The tables above show that the models meet all of the required DMRB convergence criteria, as well as the emerging guidance regarding more stringent flow change stability.

9. Conclusions

The March Area Transport Model validates well compared against defined criteria, producing a robust model from which accurate forecasts of March and the surrounding area can be made.

Conclusions

Results Summary

9.1. The overall objective has been to build a 2010 March Area Transport SATURN Model. It is intended that the base models produced by this exercise are then used to forecast local traffic flows in March and the immediate surrounding area.

Flow Calibration and Validation

9.2. It can be seen from the previously presented data that the model validates within the requirements of the DMRB criteria, both in terms of screenlines and individual traffic counts.

Journey Time Validation

9.3. The data within this report demonstrates that the MATS model has a very good level of validation for the journey times along the selected routes, with all journey time routes across all three time periods conforming to the DMRB validation criteria.

Model Convergence

9.4. The performance of the model in terms of convergence falls within the criteria specified within the DMRB guidance. The model also performs well enough to meet the recommendations of the emerging guidance on Flow Change Stability from the SATURN developers.

Suitability of the MATS Base Model

- 9.5. The indicators of model performance set out within this report demonstrate that the MATS model is capable of a good representation of the 2010 base year traffic levels and patterns. Modelled flows at individual locations and across screenline boundaries match closely to the corresponding observed traffic levels. Modelled journey times also demonstrate a very clear match to the observed situation.
- 9.6. The results of this calibration and validation exercise for each of the time periods indicate a good correlation between the observed and modelled data throughout the study area. As such, these models represent a robust basis from which to forecast local traffic flows and assess transport impacts of proposed developments within March.
- 9.7. When considering using the MATS base models for assessing transport impacts of future developments, it should be noted that the models were constructed using traffic data with the greater density of information within March (as shown in Figure 3.1). The model validates well throughout the study area, however there is a lower density of traffic count information for areas outside of March (i.e. Wimblington). This means that for assessing development areas outside of March, further local calibration and validation may be required to enable a robust assessment to be undertaken.

A. Detailed Validation Results

AM Peak Hour

Screenline Results

Table A.1 – AM Peak Screenline Results

Description	Observed Flow	Modelled Flow	Diff	% Diff	GEH	DMRB Flow	DMRB GEH		
Northern Screenline	Northern Screenline (Calibration)								
TC-15.1 A141/Hostmoor Avenue (N to E)	144	122	22	16%	1.95	\checkmark	\checkmark		
TC-15.2 A141/Hostmoor Avenue (N to S)	695	723	-28	-4%	1.05	\checkmark	\checkmark		
TC-15.4 A141/Hostmoor Avenue (S to N)	760	799	-39	-5%	1.39	\checkmark	\checkmark		
TC-25.1 Hundreds Road/Melbourne Avenue (N to S)	5	0	5	100%	3.16	\checkmark	\checkmark		
TC-25.2 Hundreds Road/Melbourne Avenue (N to W)	9	2	8	80%	3.16	\checkmark	\checkmark		
TC-25.4 Hundreds Road/Melbourne Avenue (S to N)	9	0	9	100%	4.24	\checkmark	\checkmark		
TC-25.5 Hundreds Road/Melbourne Avenue (W to N)	8	17	-8	-105%	2.41	\checkmark	\checkmark		
TC-1.1 B1101 Elm Road/Estover Road/Norwood Road (N to S & E)	303	311	-8	-3%	0.48	\checkmark	\checkmark		
TC-1.2 B1101 Elm Road/Estover Road/Norwood Road (N to W)	93	93	0	0%	0.00	\checkmark	\checkmark		
TC-1.4 B1101 Elm Road/Estover Road/Norwood Road (E to W & N)	54	54	0	0%	0.03	\checkmark	\checkmark		
TC-1.5 B1101 Elm Road/Estover Road/Norwood Road (S to W & N)	217	217	0	0%	0.02	\checkmark	\checkmark		

TC-1.7 B1101 Elm Road/Estover Road/Norwood Road (W to N)	65	65	0	0%	0.00	\checkmark	\checkmark			
Screenline Total	2362	2402	-40	-2%	0.82	\checkmark	~			
Eastern Screenline (/alidation)									
R-2.1 RSI B1099 Upwell Road (WB)	94	102	-8	-9%	0.84	\checkmark	\checkmark			
R-2.2 RSI MCC SkyHigh 2010 B1099 Upwell Road (EB)	133	110	23	17%	2.10	\checkmark	\checkmark			
TC-26.1 Estover Road/Creek Road (E to S)	2	13	-11	-569%	4.10	\checkmark	\checkmark			
TC-26.2 Estover Road/Creek Road (E to W)	16	26	-10	-64%	2.24	\checkmark	\checkmark			
TC-26.3 Estover Road/Creek Road (S to W)	29	29	-1	-2%	0.11	\checkmark	\checkmark			
TC-26.4 Estover Road/Creek Road (S to E)	3	12	-9	-288%	3.19	\checkmark	\checkmark			
TC-26.5 Estover Road/Creek Road (W to E)	6	7	-1	-15%	0.36	\checkmark	\checkmark			
TC-26.6 Estover Road/Creek Road (W to S)	22	9	13	59%	3.26	\checkmark	\checkmark			
Screenline Total	355	347	8	2%	0.43	\checkmark	✓			
Southern Screenline	(Validation)									
R-3.1 B1101 Wimblington Road (NB)	457	467	-9	-2%	0.44	\checkmark	\checkmark			
R-3.2 B1101 Wimblington Road (SB)	419	449	-30	-7%	1.44	\checkmark	\checkmark			
TC-8.1 A141/Knights End Road (S to W)	16	3	13	79%	4.11	\checkmark	\checkmark			
TC-8.2 A141/Knights End Road (S to N)	616	671	-55	-9%	2.17	\checkmark	\checkmark			

629 0 2231	-8 6 12 -69	1% 100% - 3%	2.63 0.23 4.90 1.48	✓ ✓ ✓	✓ ✓ ✓
629 0	-8 6 12	1% 100%	2.63 0.23 4.90	✓ ✓	√
629	-8	1%	0.23	v √	√
12	-8	-100 /8	2.63	v	
12	0	168%	0.00		\checkmark
0	2	100%	2.00	\checkmark	\checkmark
	0	0 2	0 2 100%	0 2 100% 2.00	0 2 100% 2.00 ✓

Western Screenline (Validation)

Screenline Total	1614	1621	-7	0%	0.18	~	~
TC-8.12 A141/Knights End Road (E to N)	78	0	78	100%	12.49	~	×
TC-8.11 A141/Knights End Road (E to W)	5	17	-12	-242%	3.64	\checkmark	\checkmark
TC-8.10 A141/Knights End Road (E to S)	12	0	12	100%	4.90	\checkmark	\checkmark
TC-8.7 A141/Knights End Road (N to E)	162	133	29	18%	2.38	\checkmark	\checkmark
TC-8.5 A141/Knights End Road (W to E)	8	2	6	77%	2.75	\checkmark	\checkmark
TC-8.3 A141/Knights End Road (S to E)	2	0	2	100%	2.00	\checkmark	\checkmark
E-9.2 Gaul Road (WB)	62	87	-25	-40%	2.89	\checkmark	\checkmark
E-9.1 Gaul Road (EB)	104	103	0	0%	0.05	\checkmark	\checkmark
E-8.2 Burrowmoor Road (WB)	104	80	24	23%	2.48	\checkmark	\checkmark
E-8.1 Burrowmoor Road (EB)	144	61	83	58%	8.23	\checkmark	×
E-1.2 Wisbech Road (WB)	562	710	-148	-26%	5.87	×	×
E-1.1 Wisbech Road (EB)	371	428	-57	-15%	2.83	\checkmark	\checkmark

TC-14.1 B1101 High Street/St Peters Road (N to E)	58	59	-1	-2%	0.18	\checkmark	~
TC-14.2 B1101 High Street/St Peters Road (N to S)	293	329	-36	-12%	2.06	\checkmark	\checkmark
TC-14.3 B1101 High Street/St Peters Road (E to S)	128	122	6	5%	0.52	√	√
TC-14.4 B1101 High Street/St Peters Road (E to N)	168	41	127	75%	12.42	×	×
TC-14.5 B1101 High Street/St Peters Road (S to N)	355	439	-84	-24%	4.23	\checkmark	√
TC-14.6 B1101 High Street/St Peters Road (S to E)	54	57	-3	-6%	0.45	\checkmark	√
TC-19.1 B1099 Wisbech Road/Norwood Road (N to E)	68	68	0	-1%	0.05	\checkmark	V
TC-19.3 B1099 Wisbech Road/Norwood Road (E to W)	321	325	-4	-1%	0.24	\checkmark	\checkmark
TC-19.4 B1099 Wisbech Road/Norwood Road (E to N)	70	68	2	3%	0.23	\checkmark	√
TC-19.6 B1099 Wisbech Road/Norwood Road (W to E)	210	158	52	25%	3.80	\checkmark	V
TC-22.1 B1101 High Street/Elwyn Road/Market Place (N to E)	208	216	-8	-4%	0.57	\checkmark	V
TC-22.3 B1101 High Street/Elwyn Road/Market Place (E to S)	83	82	1	1%	0.14	\checkmark	V
TC-22.4 B1101 High Street/Elwyn Road/Market Place (E to N)	223	240	-17	-8%	1.11	\checkmark	\checkmark

(EB) Cordon Total	4015	3976	39	1%	0.62	✓	✓
E-4.2 Creek Road	31	56	-24	-78%	3.69	\checkmark	\checkmark
E-4.1 Creek Road (WB)	33	34	-1	-2%	0.13	\checkmark	\checkmark
E-3.2 Elm Road (NB)	246	243	3	1%	0.21	\checkmark	\checkmark
E-3.1 Monitoring Elm Road (SB)	332	336	-4	-1%	0.20	\checkmark	\checkmark
E-2.2 Norwood Road (NB)	175	167	9	5%	0.66	\checkmark	\checkmark
E-2.1 Norwood Road (SB)	183	179	4	2%	0.27	\checkmark	\checkmark
TC-27.6 Burrowmoor Road/Gaul Road (NW to SW)	14	14	0	2%	0.06	\checkmark	\checkmark
TC-27.5 Burrowmoor Road/Gaul Road (NW to NE)	141	142	0	0%	0.03	\checkmark	\checkmark
TC-27.4 Burrowmoor Road/Gaul Road (SW to NE)	167	166	0	0%	0.03	\checkmark	\checkmark
TC-27.3 Burrowmoor Road/Gaul Road (SW to NW)	13	5	8	63%	2.77	\checkmark	\checkmark
TC-27.2 Burrowmoor Road/Gaul Road (NE to NW)	62	62	0	0%	0.00	\checkmark	\checkmark
TC-27.1 Burrowmoor Road/Gaul Road (NE to SW)	110	110	0	0%	0.00	\checkmark	\checkmark
TC-22.6 B1101 High Street/Elwyn Road/Market Place (S to E)	60	60	0	0%	0.03	\checkmark	\checkmark

River Screenline (Validation)

E-10.1 A141 March Bypass (SB)	876	850	26	3%	0.88	\checkmark	\checkmark
E-10.2 A141 March Bypass (NB)	718	765	-47	-7%	1.74	\checkmark	\checkmark

Dartford Road/B1101 Station Road (S to N) TC-21.6 B1101 Broad Street/B1099	47	61	-14	-29%	1.88	√	√
Dartford Road/B1101 Station Road (S to E) TC-21.9 B1101 Broad Street/B1099 Dartford	265 286	256 214	9 72	3% 25%	0.56 4.55	√ √	√
Road/B1101 Station Road (W to S) Screenline Total	2842	2787	55	2%	1.04	✓	✓

Wimblington Screenline (Calibration)

TC-5.2 A141/King Street (N to W)	19	16	3	14%	0.65	\checkmark	\checkmark
TC-5.3 A141/King Street (S to W)	4	9	-5	-134%	2.07	\checkmark	\checkmark
TC-5.5 A141/King Street (W to N)	30	28	1	4%	0.21	\checkmark	\checkmark
TC-5.6 A141/King Street (W to S)	22	20	2	10%	0.50	\checkmark	\checkmark
TC-6.1 A141/B1101 Wimblington Road (S to W)	134	160	-27	-20%	2.19	\checkmark	~
TC-6.2 A141/B1101 Wimblington Road (S to N)	111	125	-14	-13%	1.29	\checkmark	\checkmark
TC-6.3 A141/B1101 Wimblington Road (S to E)	13	0	13	98%	5.01	\checkmark	×
TC-6.6 A141/B1101 Wimblington Road (W to S)	114	119	-5	-4%	0.43	\checkmark	~

91

TC-6.8 A141/B1101 Wimblington Road (N to S)	88	89	-1	-1%	0.08	\checkmark	\checkmark
TC-6.10 A141/B1101 Wimblington Road (E to S)	5	0	5	100%	3.15	\checkmark	\checkmark
TC-16.2 A141/B1093 Doddington Road (N to W)	62	20	42	68%	6.59	\checkmark	×
TC-16.3 A141/B1093 Doddington Road (S to W)	43	38	5	12%	0.84	\checkmark	\checkmark
TC-16.5 A141/B1093 Doddington Road (W to N)	49	48	2	3%	0.23	√	√
TC-16.6 A141/B1093 Doddington Road (W to S)	22	23	-1	-4%	0.19	\checkmark	\checkmark
Screenline Total	717	696	21	3%	0.79	\checkmark	~

Validation Count Results

Table A.2 – AM Peak Validation Count Results

Description	Observed Flow	Modelled Flow	Diff	% Diff	GEH	DMRB Flow	DMRB GEH
E-1.1 Wisbech Road (EB)	371	428	-57	-15%	2.83	\checkmark	\checkmark
E-1.2 Wisbech Road (WB)	562	710	-148	-26%	5.87	×	×
E-5.1 Upwell Road (WB)	124	102	22	18%	2.05	\checkmark	\checkmark
E-5.2 Upwell Road (EB)	70	110	-40	-57%	4.22	\checkmark	\checkmark
E-7.1 Knights End Road (EB)	173	135	39	22%	3.13	\checkmark	\checkmark
E-7.2 Knights End Road (WB)	91	17	74	81%	10.05	\checkmark	×
E-8.1 Burrowmoor Road (EB)	144	61	83	58%	8.23	\checkmark	×
E-8.2 Burrowmoor Road (WB)	104	80	24	23%	2.48	\checkmark	\checkmark

E-9.1 Gaul Road (EB)	104	103	0	0%	0.05	\checkmark	~
E-9.2 Gaul Road (WB)	62	87	-25	-40%	2.89	\checkmark	\checkmark
E-10.1 A141 March Bypass (SB)	876	850	26	3%	0.88	\checkmark	\checkmark
E-10.2 A141 March Bypass (NB)	718	765	-47	-7%	1.74	\checkmark	~
E-11.1 Town Bridge (SB)	535	548	-13	-2%	0.56	\checkmark	~
E-11.2 Town Bridge (NB)	736	788	-52	-7%	1.88	\checkmark	~
R-1.1 B1101 Elm Road (NB)	184	251	-67	-36%	4.53	\checkmark	\checkmark
R-1.2 B1101 Elm Road (SB)	281	204	76	27%	4.90	\checkmark	~
R-2.1 B1099 Upwell Road (WB)	94	102	-8	-9%	0.84	\checkmark	~
R-2.2 B1099 Upwell Road (EB)	133	110	23	17%	2.10	\checkmark	\checkmark
R-3.1 B1101 Wimblington Road (NB)	457	467	-9	-2%	0.44	\checkmark	\checkmark
R-3.2 B1101 Wimblington Road (SB)	419	449	-30	-7%	1.44	\checkmark	\checkmark
R-5.1 A141 Wisbech Road (NB)	756	799	-43	-6%	1.54	\checkmark	\checkmark
R-5.2 A141 Wisbech Road (SB)	834	845	-11	-1%	0.38	\checkmark	\checkmark
TC-8.1 A141/Knights End Road (S to W)	16	3	13	79%	4.11	\checkmark	\checkmark
TC-8.2 A141/Knights End Road (S to N)	616	671	-55	-9%	2.17	\checkmark	~
TC-8.3 A141/Knights End Road (S to E)	2	0	2	100%	2.00	\checkmark	\checkmark
TC-8.4 A141/Knights End Road (W to N)	37	0	37	100%	8.59	\checkmark	×
TC-8.5 A141/Knights End Road (W to E)	8	2	6	77%	2.75	\checkmark	\checkmark
TC-8.6 A141/Knights End Road (W to S)	5	12	-8	-168%	2.63	\checkmark	\checkmark

TC-8.7 A141/Knights End Road (N to E)	162	133	29	18%	2.38	\checkmark	\checkmark
TC-8.8 A141/Knights End Road (N to S)	635	629	6	1%	0.23	\checkmark	\checkmark
TC-8.9 A141/Knights End Road (N to W)	29	0	29	100%	7.62	\checkmark	×
TC-8.10 A141/Knights End Road (E to S)	12	0	12	100%	4.90	\checkmark	\checkmark
TC-8.11 A141/Knights End Road (E to W)	5	17	-12	-242%	3.64	\checkmark	\checkmark
TC-8.12 A141/Knights End Road (E to N)	78	0	78	100%	12.49	\checkmark	×
TC-13.1 B1101 High Street/Burrowmoor Road (N to S)	303	294	9	3%	0.53	\checkmark	~
TC-13.2 B1101 High Street/Burrowmoor Road (N to SW & NW)	123	120	3	2%	0.24	\checkmark	~
TC-13.3 B1101 High Street/Burrowmoor Road (S to SW & NW)	105	82	23	22%	2.41	\checkmark	~
TC-13.4 B1101 High Street/Burrowmoor Road (S to N)	449	411	38	8%	1.83	\checkmark	\checkmark
TC-13.9 B1101 High Street/Burrowmoor Road (SW & NW to N)	199	197	2	1%	0.11	\checkmark	\checkmark
TC-13.10 B1101 High Street/Burrowmoor Road (SW & NW to S)	79	122	-43	-55%	4.32	\checkmark	V
TC-21.1 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (E to S)	271	300	-29	-11%	1.70	\checkmark	\checkmark
TC-21.2 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (E to W)	83	84	-2	-2%	0.17	\checkmark	\checkmark

TC-21.3 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (E to N)	4	0	4	100%	2.83	V	V
TC-21.4 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to W)	379	341	38	10%	2.03	\checkmark	\checkmark
TC-21.5 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to N)	47	61	-14	-29%	1.88	\checkmark	V
TC-21.6 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to E)	265	256	9	3%	0.56	\checkmark	V
TC-21.7 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (W to N)	3	0	3	100%	2.45	\checkmark	V
TC-21.8 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (W to E)	55	38	17	31%	2.52	\checkmark	V
TC-21.9 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (W to S)	286	214	72	25%	4.55	\checkmark	V
TC-23.1 B1099 Upwell road/Elwyn Road (N to E)	103	109	-6	-6%	0.61	\checkmark	\checkmark
TC-23.2 B1099 Upwell road/Elwyn Road (N to W)	62	97	-36	-58%	4.01	\checkmark	\checkmark
TC-23.3 B1099 Upwell road/Elwyn Road (E to W)	191	66	125	65%	11.01	×	×
TC-23.4 B1099 Upwell road/Elwyn Road (E to N)	81	101	-20	-25%	2.15	\checkmark	\checkmark
	1						

TC-23.5 B1099 Upwell road/Elwyn Road (W to N)	39	45	-7	-18%	1.06	\checkmark	\checkmark
TC-23.6 B1099 Upwell road/Elwyn Road (W to E)	90	71	19	21%	2.14	\checkmark	\checkmark
TC-24.1 Hundreds Road/Norwood Road (N to E)	39	20	19	48%	3.46	\checkmark	\checkmark
TC-24.2 Hundreds Road/Norwood Road (N to S)	77	17	59	77%	8.62	\checkmark	×
TC-24.3 Hundreds Road/Norwood Road (E to S)	113	162	-49	-43%	4.16	\checkmark	\checkmark
TC-24.4 Hundreds Road/Norwood Road (E to N)	70	25	45	65%	6.62	\checkmark	×
TC-24.5 Hundreds Road/Norwood Road (S to N)	100	95	5	5%	0.53	\checkmark	\checkmark
TC-24.6 Hundreds Road/Norwood Road (S to E)	65	72	-6	-9%	0.74	\checkmark	\checkmark
TC-26.1 Estover Road/Creek Road (E to S)	2	13	-11	-569%	4.10	\checkmark	\checkmark
TC-26.2 Estover Road/Creek Road (E to W)	16	26	-10	-64%	2.24	\checkmark	\checkmark
TC-26.3 Estover Road/Creek Road (S to W)	29	29	-1	-2%	0.11	\checkmark	\checkmark
TC-26.4 Estover Road/Creek Road (S to E)	3	12	-9	-288%	3.19	\checkmark	\checkmark
TC-26.5 Estover Road/Creek Road (W to E)	6	7	-1	-15%	0.36	\checkmark	\checkmark
TC-26.6 Estover Road/Creek Road (W to S)	22	9	13	59%	3.26	\checkmark	\checkmark
LC-1.1 B1101 Station Road Level Crossing (NB)	239	243	-4	-1%	0.23	\checkmark	\checkmark

MATS: Comparison of Modelled and Observed Journey Times - AM -Pink Route NB

Figure A.1 – Pink Route NB – AM Peak

MATS: Comparison of Modelled and Observed Journey Times - AM -Pink Route SB

Figure A.2 – Pink Route SB – AM Peak

MATS: Comparison of Modelled and Observed Journey Times - AM -Blue Route EB

Figure A.3 – Blue Route EB – AM Peak

MATS: Comparison of Modelled and Observed Journey Times - AM -Blue Route WB

Figure A.4 – Blue Route WB – AM Peak

Figure A.5 – Green Route NB – AM Peak

MATS: Comparison of Modelled and Observed Journey Times - AM -Green Route SB

Figure A.6 – Green Route SB – AM Peak

MATS: Comparison of Modelled and Observed Journey Times - AM -Red Route NB

Figure A.7 – Red Route NB – AM Peak

MATS: Comparison of Modelled and Observed Journey Times - AM -Red Route SB

Figure A.8 – Red Route SB – AM Peak

MATS: Comparison of Modelled and Observed Journey Times - AM -Black Pouto NR

Figure A.9 – Black Route NB – AM Peak

MATS: Comparison of Modelled and Observed Journey Times - AM -Black Boute SB

Figure A.10 – Black Route SB – AM Peak

Inter Peak

Screenline Results

Table A.3 – Inter Peak Screenline Results

Description	Observed Flow	Modelled Flow	Diff	% Diff	GEH	DMRB Flow	DMRB GEH	
Northern Screenline (Calibration)								
TC-15.1 A141/Hostmoor Avenue (N to E)	144	122	22	15%	1.90	\checkmark	√	
TC-15.2 A141/Hostmoor Avenue (N to S)	470	583	-113	-24%	4.94	×	\checkmark	
TC-15.4 A141/Hostmoor Avenue (S to N)	602	706	-104	-17%	4.06	×	\checkmark	
TC-25.1 Hundreds Road/Melbourne Avenue (N to S)	21	0	21	100%	6.45	\checkmark	×	
TC-25.2 Hundreds Road/Melbourne Avenue (N to W)	14	13	1	8%	0.30	\checkmark	\checkmark	
TC-25.4 Hundreds Road/Melbourne Avenue (S to N)	23	0	23	100%	6.71	\checkmark	×	
TC-25.5 Hundreds Road/Melbourne Avenue (W to N)	14	16	-3	-21%	0.74	\checkmark	\checkmark	
TC-1.1 B1101 Elm Road/Estover Road/Norwood Road (N to S & E)	178	210	-33	-18%	2.34	\checkmark	\checkmark	
TC-1.2 B1101 Elm Road/Estover Road/Norwood Road (N to W)	53	53	0	1%	0.07	\checkmark	\checkmark	
TC-1.4 B1101 Elm Road/Estover Road/Norwood Road (E to W & N)	36	51	-15	-41%	2.26	\checkmark	\checkmark	
TC-1.5 B1101 Elm Road/Estover Road/Norwood Road (S to W & N)	189	180	9	5%	0.65	\checkmark	\checkmark	
TC-1.7 B1101 Elm Road/Estover Road/Norwood Road (W to N)	61	59	2	3%	0.24	\checkmark	~	
---	-------------	------	------	-------	------	--------------	--------------	
Screenline Total	1804	1995	-190	-11%	4.36	×	×	
Eastern Screenline (/alidation)							
R-2.1 RSI B1099 Upwell Road (WB)	94	112	-19	-20%	1.84	\checkmark	\checkmark	
R-2.2 RSI MCC SkyHigh 2010 B1099 Upwell Road (EB)	96	113	-17	-18%	1.65	\checkmark	\checkmark	
TC-26.1 Estover Road/Creek Road (E to S)	5	21	-16	-319%	4.43	\checkmark	\checkmark	
TC-26.2 Estover Road/Creek Road (E to W)	10	27	-17	-175%	4.01	\checkmark	\checkmark	
TC-26.3 Estover Road/Creek Road (S to W)	26	10	17	63%	3.94	\checkmark	\checkmark	
TC-26.4 Estover Road/Creek Road (S to E)	6	20	-15	-251%	4.02	\checkmark	\checkmark	
TC-26.5 Estover Road/Creek Road (W to E)	13	26	-13	-103%	2.99	\checkmark	\checkmark	
TC-26.6 Estover Road/Creek Road (W to S)	26	10	16	62%	3.74	\checkmark	√	
Screenline Total	327	358	-32	-10%	1.70	×	~	
Southern Screenline								
R-3.1 B1101 Wimblington Road (NB)	350	392	-42	-12%	2.19	\checkmark	\checkmark	
R-3.2 B1101 Wimblington Road (SB)	327	396	-69	-21%	3.64	\checkmark	\checkmark	
TC-8.1 A141/Knights End Road (S to W)	15	17	-2	-16%	0.59	\checkmark	\checkmark	
TC-8.2 A141/Knights End Road (S to N)	499	524	-25	-5%	1.12	\checkmark	√	

TC-8.3 A141/Knights	5	0	5	100%	3.31	\checkmark	\checkmark
TC-8.6 A141/Knights End Road (W to S)	14	15	0	-3%	0.10	\checkmark	\checkmark
TC-8.8 A141/Knights End Road (N to S)	474	493	-18	-4%	0.81	\checkmark	\checkmark
TC-8.10 A141/Knights End Road (E to S)	5	0	5	100%	3.26	\checkmark	\checkmark
Screenline Total	1690	1837	-147	-9%	3.49	×	~
	-						

Western Screenline (Validation)

Screenline Total							
TC-8.12 A141/Knights End Road (E to N)	36	0	36	100%	8.51	√	×
TC-8.11 A141/Knights End Road (E to W)	5	32	-26	-481%	6.11	\checkmark	×
TC-8.10 A141/Knights End Road (E to S)	5	0	5	100%	3.26	\checkmark	\checkmark
TC-8.7 A141/Knights End Road (N to E)	64	22	41	65%	6.27	\checkmark	×
TC-8.5 A141/Knights End Road (W to E)	8	25	-17	-207%	4.13	\checkmark	\checkmark
TC-8.3 A141/Knights End Road (S to E)	5	0	5	100%	3.31	\checkmark	\checkmark
E-9.2 Gaul Road (WB)	54	96	-42	-78%	4.84	\checkmark	\checkmark
E-9.1 Gaul Road (EB)	86	104	-19	-22%	1.90	\checkmark	\checkmark
E-8.2 Burrowmoor Road (WB)	74	51	23	31%	2.88	\checkmark	\checkmark
E-8.1 Burrowmoor Road (EB)	81	75	6	7%	0.66	\checkmark	\checkmark
E-1.2 Wisbech Road (WB)	442	438	5	1%	0.23	\checkmark	\checkmark
E-1.1 Wisbech Road (EB)	367	344	22	6%	1.19	\checkmark	\checkmark

TC-14.1 B1101 High Street/St Peters Road (N to E)	89	54	35	40%	4.17	\checkmark	\checkmark
TC-14.2 B1101 High Street/St Peters Road (N to S)	300	325	-25	-8%	1.41	\checkmark	\checkmark
TC-14.3 B1101 High Street/St Peters Road (E to S)	69	91	-22	-32%	2.46	\checkmark	\checkmark
TC-14.4 B1101 High Street/St Peters Road (E to N)	124	48	77	62%	8.28	\checkmark	×
TC-14.5 B1101 High Street/St Peters Road (S to N)	332	338	-6	-2%	0.34	\checkmark	\checkmark
TC-14.6 B1101 High Street/St Peters Road (S to E)	66	85	-19	-29%	2.20	\checkmark	\checkmark
TC-19.1 B1099 Wisbech Road/Norwood Road (N to E)	54	39	15	28%	2.21	\checkmark	\checkmark
TC-19.3 B1099 Wisbech Road/Norwood Road (E to W)	319	264	55	17%	3.24	\checkmark	\checkmark
TC-19.4 B1099 Wisbech Road/Norwood Road (E to N)	68	50	18	27%	2.38	\checkmark	\checkmark
TC-19.6 B1099 Wisbech Road/Norwood Road (W to E)	244	157	87	36%	6.12	\checkmark	×
TC-22.1 B1101 High Street/Elwyn Road/Market Place (N to E)	226	226	0	0%	0.03	√	\checkmark
TC-22.3 B1101 High Street/Elwyn Road/Market Place (E to S)	72	55	17	23%	2.09	\checkmark	\checkmark
TC-22.4 B1101 High Street/Elwyn Road/Market Place (E to N)	193	233	-39	-20%	2.68	\checkmark	\checkmark

March Inner Cordon (Calibration)

TC-22.6 B1101 High Street/Elwyn Road/Market Place (S to E)	64	38	26	41%	3.70	\checkmark	√
TC-27.1 Burrowmoor Road/Gaul Road (NE to SW)	86	86	0	1%	0.05	\checkmark	\checkmark
TC-27.2 Burrowmoor Road/Gaul Road (NE to NW)	67	98	-31	-46%	3.38	\checkmark	\checkmark
TC-27.3 Burrowmoor Road/Gaul Road (SW to NW)	6	1	5	81%	2.66	\checkmark	\checkmark
TC-27.4 Burrowmoor Road/Gaul Road (SW to NE)	96	96	0	0%	0.04	\checkmark	\checkmark
TC-27.5 Burrowmoor Road/Gaul Road (NW to NE)	100	100	0	0%	0.00	\checkmark	\checkmark
TC-27.6 Burrowmoor Road/Gaul Road (NW to SW)	6	0	6	100%	3.46	\checkmark	\checkmark
E-2.1 Norwood Road (SB)	149	147	2	1%	0.14	\checkmark	\checkmark
E-2.2 Norwood Road (NB)	129	127	3	2%	0.23	\checkmark	\checkmark
E-3.1 Monitoring Elm Road (SB)	225	216	8	4%	0.56	\checkmark	\checkmark
E-3.2 Elm Road (NB)	206	206	-1	0%	0.05	\checkmark	\checkmark
E-4.1 Creek Road (WB)	42	56	-14	-34%	2.06	\checkmark	\checkmark
E-4.2 Creek Road (EB)	40	55	-14	-36%	2.10	\checkmark	\checkmark
Cordon Total	3520	3368	152	4%	2.59	\checkmark	~

River Screenline (Validation)

E-10.1 A141 March Bypass (SB)	646	647	-1	0%	0.06	\checkmark	\checkmark
E-10.2 A141 March Bypass (NB)	586	625	-39	-7%	1.57	\checkmark	\checkmark

Screenline Total	2362	2363	-1.4	0%	0.03	~	~
TC-21.9 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (W to S)	250	225	24	10%	1.58	\checkmark	V
TC-21.6 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to E)	265	269	-4	-1%	0.24	\checkmark	\checkmark
TC-21.5 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to N)	19	0	19	100%	6.16	\checkmark	×
TC-21.4 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to W)	295	300	-5	-2%	0.29	\checkmark	V
TC-21.1 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (E to S)	302	298	4	1%	0.23	\checkmark	V

Wimblington Screenline (Calibration)

TC-5.2 A141/King Street (N to W)	22	22	0	1%	0.05	\checkmark	\checkmark
TC-5.3 A141/King Street (S to W)	9	9	0	-1%	0.02	\checkmark	\checkmark
TC-5.5 A141/King Street (W to N)	24	22	1	6%	0.27	\checkmark	\checkmark
TC-5.6 A141/King Street (W to S)	7	7	0	-1%	0.02	\checkmark	\checkmark
TC-6.1 A141/B1101 Wimblington Road (S to W)	122	125	-4	-3%	0.34	\checkmark	\checkmark
TC-6.2 A141/B1101 Wimblington Road (S to N)	107	70	37	35%	3.92	\checkmark	\checkmark
TC-6.3 A141/B1101 Wimblington Road (S to E)	6	0	6	98%	3.48	\checkmark	\checkmark
TC-6.6 A141/B1101 Wimblington Road (W to S)	116	127	-11	-10%	1.01	\checkmark	\checkmark

TC-6.8 A141/B1101 Wimblington Road (N to S)	106	45	61	58%	7.05	\checkmark	×
TC-6.10 A141/B1101 Wimblington Road (E to S)	4	0	4	97%	2.72	\checkmark	\checkmark
TC-16.2 A141/B1093 Doddington Road (N to W)	36	85	-49	-137%	6.32	\checkmark	×
TC-16.3 A141/B1093 Doddington Road (S to W)	32	30	2	6%	0.35	\checkmark	\checkmark
TC-16.5 A141/B1093 Doddington Road (W to N)	37	66	-29	-80%	4.09	√	√
TC-16.6 A141/B1093 Doddington Road (W to S)	26	25	1	4%	0.23	\checkmark	\checkmark
Screenline Total	654	634	19	3%	0.77	\checkmark	\checkmark

Validation Count Results

Table A.4 – Inter Peak Validation Count Results

Description	Observed Flow	Modelled Flow	Diff	% Diff	GEH	DMRB Flow	DMRB GEH
E-1.1 Wisbech Road (EB)	367	344	22	6%	1.19	\checkmark	\checkmark
E-1.2 Wisbech Road (WB)	442	438	5	1%	0.23	\checkmark	\checkmark
E-5.1 Upwell Road (WB)	82	112	-31	-38%	3.12	\checkmark	\checkmark
E-5.2 Upwell Road (EB)	70	113	-43	-62%	4.50	\checkmark	\checkmark
E-7.1 Knights End Road (EB)	64	47	17	26%	2.23	\checkmark	\checkmark
E-7.2 Knights End Road (WB)	40	32	8	20%	1.35	\checkmark	\checkmark
E-8.1 Burrowmoor Road (EB)	81	75	6	7%	0.66	\checkmark	\checkmark
E-8.2 Burrowmoor Road (WB)	74	51	23	31%	2.88	\checkmark	\checkmark

E-9.1 Gaul Road (EB)	86	104	-18	-22%	1.90	\checkmark	\checkmark
E-9.2 Gaul Road (WB)	54	96	-42	-78%	4.84	\checkmark	\checkmark
E-10.1 A141 March Bypass (SB)	646	647	-1	0%	0.06	\checkmark	\checkmark
E-10.2 A141 March Bypass (NB)	586	625	-39	-7%	1.57	\checkmark	\checkmark
E-11.1 Town Bridge (SB)	539	553	-14	-3%	0.61	\checkmark	\checkmark
E-11.2 Town Bridge (NB)	622	630	-8	-1%	0.33	\checkmark	\checkmark
R-1.1 B1101 Elm Road (NB)	167	162	6	3%	0.44	\checkmark	\checkmark
R-1.2 B1101 Elm Road (SB)	163	157	6	4%	0.50	\checkmark	\checkmark
R-2.1 B1099 Upwell Road (WB)	94	112	-19	-20%	1.85	\checkmark	\checkmark
R-2.2 B1099 Upwell Road (EB)	96	113	-17	-18%	1.65	\checkmark	\checkmark
R-3.1 B1101 Wimblington Road (NB)	350	392	-42	-12%	2.19	\checkmark	\checkmark
R-3.2 B1101 Wimblington Road (SB)	327	396	-69	-21%	3.64	\checkmark	\checkmark
R-5.1 A141 Wisbech Road (NB)	602	706	-104	-17%	4.08	×	\checkmark
R-5.2 A141 Wisbech Road (SB)	591	706	-114	-19%	4.48	×	\checkmark
TC-8.1 A141/Knights End Road (S to W)	15	17	-2	-16%	0.59	\checkmark	\checkmark
TC-8.2 A141/Knights End Road (S to N)	499	524	-25	-5%	1.12	\checkmark	\checkmark
TC-8.3 A141/Knights End Road (S to E)	5	0	5	100%	3.31	\checkmark	\checkmark
TC-8.4 A141/Knights End Road (W to N)	34	0	34	100%	8.21	\checkmark	×
TC-8.5 A141/Knights End Road (W to E)	8	25	-17	-207%	4.13	\checkmark	\checkmark
TC-8.6 A141/Knights End Road (W to S)	14	15	0	-3%	0.10	\checkmark	\checkmark

TC-8.7 A141/Knights End Road (N to E)	64	22	41	65%	6.28	\checkmark	×
TC-8.8 A141/Knights End Road (N to S)	474	492	-18	-4%	0.81	\checkmark	√
TC-8.9 A141/Knights End Road (N to W)	31	0	31	100%	7.91	\checkmark	×
TC-8.10 A141/Knights End Road (E to S)	5	0	5	100%	3.26	\checkmark	~
TC-8.11 A141/Knights End Road (E to W)	5	32	-26	-481%	6.11	\checkmark	×
TC-8.12 A141/Knights End Road (E to N)	36	0	36	100%	8.51	\checkmark	×
TC-13.1 B1101 High Street/Burrowmoor Road (N to S)	272	276	-4	-1%	0.24	\checkmark	√
TC-13.2 B1101 High Street/Burrowmoor Road (N to SW & NW)	125	107	18	15%	1.70	\checkmark	V
TC-13.3 B1101 High Street/Burrowmoor Road (S to SW & NW)	89	121	-32	-36%	3.11	\checkmark	V
TC-13.4 B1101 High Street/Burrowmoor Road (S to N)	339	288	51	15%	2.89	\checkmark	~
TC-13.9 B1101 High Street/Burrowmoor Road (SW & NW to N)	147	147	-1	0%	0.05	\checkmark	\checkmark
TC-13.10 B1101 High Street/Burrowmoor Road (SW & NW to S)	106	121	-15	-14%	1.40	~	V
TC-21.1 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (E to S)	302	298	4	1%	0.23	√	\checkmark
TC-21.2 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (E to W)	115	68	47	41%	4.88	√	\checkmark

TC-21.3 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (E to N)	3	0	3	100%	2.35	\checkmark	\checkmark
TC-21.4 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to W)	295	300	-5	-2%	0.29	\checkmark	\checkmark
TC-21.5 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to N)	19	0	19	100%	6.16	\checkmark	×
TC-21.6 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to E)	265	269	-4	-1%	0.24	\checkmark	V
TC-21.7 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (W to N)	3	0	3	100%	2.45	\checkmark	\checkmark
TC-21.8 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (W to E)	112	49	62	56%	6.94	\checkmark	×
TC-21.9 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (W to S)	250	225	24	10%	1.58	\checkmark	\checkmark
TC-23.1 B1099 Upwell road/Elwyn Road (N to E)	73	86	-13	-17%	1.41	\checkmark	\checkmark
TC-23.2 B1099 Upwell road/Elwyn Road (N to W)	40	80	-40	-101%	5.18	\checkmark	×
TC-23.3 B1099 Upwell road/Elwyn Road (E to W)	123	59	65	52%	6.78	\checkmark	×
TC-23.4 B1099 Upwell road/Elwyn Road (E to N)	49	89	-40	-82%	4.82	\checkmark	\checkmark
TC-23.5 B1099 Upwell road/Elwyn Road (W to N)	52	66	-14	-28%	1.86	\checkmark	\checkmark

TC-23.6 B1099 Upwell road/Elwyn Road (W to E)	89	73	16	18%	1.74	\checkmark	\checkmark
TC-24.1 Hundreds Road/Norwood Road (N to E)	71	51	20	28%	2.58	\checkmark	\checkmark
TC-24.2 Hundreds Road/Norwood Road (N to S)	106	66	39	37%	4.25	\checkmark	\checkmark
TC-24.3 Hundreds Road/Norwood Road (E to S)	59	81	-22	-38%	2.64	\checkmark	\checkmark
TC-24.4 Hundreds Road/Norwood Road (E to N)	55	47	8	14%	1.06	\checkmark	\checkmark
TC-24.5 Hundreds Road/Norwood Road (S to N)	93	56	36	39%	4.18	\checkmark	\checkmark
TC-24.6 Hundreds Road/Norwood Road (S to E)	51	70	-19	-37%	2.41	\checkmark	\checkmark
TC-26.1 Estover Road/Creek Road (E to S)	5	21	-16	-319%	4.43	\checkmark	\checkmark
TC-26.2 Estover Road/Creek Road (E to W)	10	27	-17	-175%	4.01	\checkmark	\checkmark
TC-26.3 Estover Road/Creek Road (S to W)	26	10	17	63%	3.94	\checkmark	\checkmark
TC-26.4 Estover Road/Creek Road (S to E)	6	20	-15	-251%	4.02	\checkmark	\checkmark
TC-26.5 Estover Road/Creek Road (W to E)	13	26	-13	-103%	2.99	\checkmark	\checkmark
TC-26.6 Estover Road/Creek Road (W to S)	26	10	16	62%	3.74	\checkmark	\checkmark
LC-1.1 B1101 Station Road Level Crossing (NB)	213	206	7	3%	0.49	\checkmark	\checkmark
LC-1.2 B1101 Station Road Level Crossing (SB)	225	216	8	4%	0.57	\checkmark	\checkmark

Overall Validation Count Results 97% 87%

118

MATS: Comparison of Modelled and Observed Journey Times - IP -Pink Route NB

Figure A.11 – Pink Route NB – Inter Peak

MATS: Comparison of Modelled and Observed Journey Times - IP -Pink Route SB

Figure A.12 – Pink Route SB – Inter Peak

MATS: Comparison of Modelled and Observed Journey Times - IP -Blue Route EB

Figure A.13 – Blue Route EB – Inter Peak

MATS: Comparison of Modelled and Observed Journey Times - IP -Blue Route WB

Figure A.14 – Blue Route WB – Inter Peak

MATS: Comparison of Modelled and Observed Journey Times - IP -

Figure A.15 – Green Route NB – Inter Peak

MATS: Comparison of Modelled and Observed Journey Times - IP -Green Boute SB

Figure A.16 – Green Route SB – Inter Peak

MATS: Comparison of Modelled and Observed Journey Times - IP -Red Route NB

Figure A.17 – Red Route NB – Inter Peak

Figure A.18 – Red Route SB – Inter Peak

Figure A.19 – Black Route NB – Inter Peak

Figure A.20 – Black Route SB – Inter Peak

PM Peak

Screenline Results

Table A.5 – PM Peak Screenline Results

Description	Observed Flow	Modelled Flow	Diff	% Diff	GEH	DMRB Flow	DMRB GEH
Northern Screenline	(Calibration)						
TC-15.1 A141/Hostmoor Avenue (N to E)	137	47	90	66%	9.37	\checkmark	×
TC-15.2 A141/Hostmoor Avenue (N to S)	692	708	-16	-2%	0.61	\checkmark	\checkmark
TC-15.4 A141/Hostmoor Avenue (S to N)	865	901	-37	-4%	1.23	\checkmark	\checkmark
TC-25.1 Hundreds Road/Melbourne Avenue (N to S)	4	0	4	100%	2.83	\checkmark	\checkmark
TC-25.2 Hundreds Road/Melbourne Avenue (N to W)	2	2	0	0%	0.00	\checkmark	\checkmark
TC-25.4 Hundreds Road/Melbourne Avenue (S to N)	1	0	1	100%	1.41	\checkmark	\checkmark
TC-25.5 Hundreds Road/Melbourne Avenue (W to N)	3	18	-15	-509%	4.68	\checkmark	\checkmark
TC-1.1 B1101 Elm Road/Estover Road/Norwood Road (N to S & E)	259	306	-47	-18%	2.81	\checkmark	\checkmark
TC-1.2 B1101 Elm Road/Estover Road/Norwood Road (N to W)	79	79	0	0%	0.00	\checkmark	\checkmark
TC-1.4 B1101 Elm Road/Estover Road/Norwood Road (E to W & N)	40	40	0	0%	0.00	\checkmark	\checkmark
TC-1.5 B1101 Elm Road/Estover Road/Norwood Road (S to W & N)	229	228	2	1%	0.12	\checkmark	V

TC-1.7 B1101 Elm Road/Estover Road/Norwood Road (W to N)	94	94	0	0%	0.00	\checkmark	\checkmark
Screenline Total	2405	2424	-19	-1%	0.38	\checkmark	✓
Eastern Screenline (/alidation)						
R-2.1 RSI B1099 Upwell Road (WB)	126	138	-12	-10%	1.09	\checkmark	\checkmark
R-2.2 RSI MCC SkyHigh 2010 B1099 Upwell Road (EB)	126	124	2	2%	0.20	\checkmark	\checkmark
TC-26.1 Estover Road/Creek Road (E to S)	11	10	1	8%	0.28	\checkmark	\checkmark
TC-26.2 Estover Road/Creek Road (E to W)	11	20	-9	-81%	2.28	\checkmark	\checkmark
TC-26.3 Estover Road/Creek Road (S to W)	26	9	17	64%	3.97	\checkmark	\checkmark
TC-26.4 Estover Road/Creek Road (S to E)	4	11	-7	-183%	2.65	\checkmark	\checkmark
TC-26.5 Estover Road/Creek Road (W to E)	13	25	-11	-84%	2.58	\checkmark	\checkmark
TC-26.6 Estover Road/Creek Road (W to S)	38	35	4	9%	0.60	\checkmark	\checkmark
Screenline Total	420	416	4	1%	0.18	~	✓
Southern Screenline	(Validation)						
R-3.1 B1101 Wimblington Road (NB)	381	443	-62	-16%	3.06	\checkmark	\checkmark
R-3.2 B1101 Wimblington Road (SB)	588	530	58	10%	2.45	\checkmark	\checkmark
TC-8.1 A141/Knights End Road (S to W)	8	5	3	31%	0.97	\checkmark	\checkmark
TC-8.2 A141/Knights End Road (S to N)	770	781	-11	-1%	0.40	\checkmark	\checkmark

TC-8.3 A141/Knights End Road (S to E)	6	0	6	100%	3.46	\checkmark	\checkmark
TC-8.6 A141/Knights End Road (W to S)	11	1	10	87%	3.85	\checkmark	\checkmark
TC-8.8 A141/Knights End Road (N to S)	642	665	-23	-4%	0.92	\checkmark	\checkmark
TC-8.10 A141/Knights End Road (E to S)	9	0	9	100%	4.24	\checkmark	\checkmark
Screenline Total	2415	2426	-11	0%	0.23	\checkmark	~
	•						

Western Screenline (Validation)

Screenline Total	1546	1559	-13	-1%	0.33	✓	~
TC-8.12 A141/Knights End Road (E to N)	35	0	35	100%	8.37	\checkmark	×
TC-8.11 A141/Knights End Road (E to W)	5	7	-2	-37%	0.76	\checkmark	\checkmark
TC-8.10 A141/Knights End Road (E to S)	9	0	9	100%	4.24	\checkmark	\checkmark
TC-8.7 A141/Knights End Road (N to E)	84	36	48	57%	6.16	\checkmark	×
TC-8.5 A141/Knights End Road (W to E)	19	2	17	90%	5.22	\checkmark	×
TC-8.3 A141/Knights End Road (S to E)	6	0	6	100%	3.46	\checkmark	\checkmark
E-9.2 Gaul Road (WB)	54	63	-9	-16%	1.13	\checkmark	\checkmark
E-9.1 Gaul Road (EB)	153	172	-20	-13%	1.53	\checkmark	\checkmark
E-8.2 Burrowmoor Road (WB)	65	46	19	29%	2.53	\checkmark	\checkmark
E-8.1 Burrowmoor Road (EB)	145	133	12	8%	1.03	\checkmark	\checkmark
E-1.2 Wisbech Road (WB)	510	586	-76	-15%	3.26	\checkmark	\checkmark
E-1.1 Wisbech Road (EB)	461	513	-52	-11%	2.36	\checkmark	\checkmark

TC-14.1 B1101 High Street/St Peters Road (N to E)	93	92	1	1%	0.10	\checkmark	\checkmark
TC-14.2 B1101 High Street/St Peters Road (N to S)	351	398	-47	-13%	2.41	\checkmark	\checkmark
TC-14.3 B1101 High Street/St Peters Road (E to S)	84	106	-23	-27%	2.33	\checkmark	√
TC-14.4 B1101 High Street/St Peters Road (E to N)	124	74	50	40%	4.99	\checkmark	√
TC-14.5 B1101 High Street/St Peters Road (S to N)	407	411	-3	-1%	0.17	\checkmark	√
TC-14.6 B1101 High Street/St Peters Road (S to E)	109	110	-1	-1%	0.06	\checkmark	V
TC-19.1 B1099 Wisbech Road/Norwood Road (N to E)	81	63	18	22%	2.14	\checkmark	√
TC-19.3 B1099 Wisbech Road/Norwood Road (E to W)	330	326	4	1%	0.23	\checkmark	√
TC-19.4 B1099 Wisbech Road/Norwood Road (E to N)	96	28	68	71%	8.63	\checkmark	×
TC-19.6 B1099 Wisbech Road/Norwood Road (W to E)	267	157	109	41%	7.49	×	×
TC-22.1 B1101 High Street/Elwyn Road/Market Place (N to E)	319	321	-2	0%	0.09	\checkmark	√
TC-22.3 B1101 High Street/Elwyn Road/Market Place (E to S)	69	69	0	0%	0.00	\checkmark	√
TC-22.4 B1101 High Street/Elwyn Road/Market Place (E to N)	183	261	-78	-43%	5.24	\checkmark	×

March Inner Cordon (Calibration)

TC-22.6 B1101 High Street/Elwyn Road/Market Place (S to E)	77	77	0	0%	0.01	\checkmark	\checkmark
TC-27.1 Burrowmoor Road/Gaul Road (NE to SW)	130	134	-4	-3%	0.34	\checkmark	\checkmark
TC-27.2 Burrowmoor Road/Gaul Road (NE to NW)	65	86	-21	-33%	2.45	\checkmark	\checkmark
TC-27.3 Burrowmoor Road/Gaul Road (SW to NW)	5	5	0	0%	0.00	\checkmark	\checkmark
TC-27.4 Burrowmoor Road/Gaul Road (SW to NE)	123	123	0	0%	0.02	\checkmark	\checkmark
TC-27.5 Burrowmoor Road/Gaul Road (NW to NE)	143	153	-10	-7%	0.79	\checkmark	\checkmark
TC-27.6 Burrowmoor Road/Gaul Road (NW to SW)	4	0	4	100%	2.83	\checkmark	\checkmark
E-2.1 Norwood Road (SB)	212	212	0	0%	0.00	\checkmark	\checkmark
E-2.2 Norwood Road (NB)	108	108	0	0%	0.03	\checkmark	\checkmark
E-3.1 Monitoring Elm Road (SB)	273	286	-13	-5%	0.77	\checkmark	\checkmark
E-3.2 Elm Road (NB)	260	255	6	2%	0.36	\checkmark	\checkmark
E-4.1 Creek Road (WB)	54	82	-29	-53%	3.46	\checkmark	\checkmark
E-4.2 Creek Road (EB)	37	60	-23	-61%	3.26	\checkmark	\checkmark
Cordon Total	4207	4219	12	0%	0.18	\checkmark	~

River Screenline (Validation)

E-10.1 A141 March Bypass (SB)	813	907	-94	-12%	3.21	\checkmark	\checkmark
E-10.2 A141 March Bypass (NB)	750	803	-53	-7%	1.90	\checkmark	\checkmark

Screenline Total	2985	3077	-92	-3%	1.68	~	~
TC-21.9 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (W to S)	319	270	49	15%	2.86	\checkmark	~
TC-21.6 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to E)	313	325	-12	-4%	0.69	\checkmark	\checkmark
TC-21.5 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to N)	26	0	26	100%	7.14	\checkmark	×
TC-21.4 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to W)	369	337	32	9%	1.69	\checkmark	~
TC-21.1 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (E to S)	396	435	-39	-10%	1.91	\checkmark	V

Wimblington Screenline (Calibration)

TC-5.2 A141/King Street (N to W)	37	37	0	0%	0.00	\checkmark	\checkmark
TC-5.3 A141/King Street (S to W)	17	17	0	0%	0.00	\checkmark	\checkmark
TC-5.5 A141/King Street (W to N)	24	24	0	0%	0.00	\checkmark	\checkmark
TC-5.6 A141/King Street (W to S)	8	8	0	0%	0.01	\checkmark	\checkmark
TC-6.1 A141/B1101 Wimblington Road (S to W)	143	145	-2	-2%	0.18	\checkmark	~
TC-6.2 A141/B1101 Wimblington Road (S to N)	123	110	13	11%	1.20	\checkmark	\checkmark
TC-6.3 A141/B1101 Wimblington Road (S to E)	4	0	4	97%	2.78	\checkmark	\checkmark
TC-6.6 A141/B1101 Wimblington Road (W to S)	179	181	-2	-1%	0.14	\checkmark	\checkmark

TC-6.8 A141/B1101 Wimblington Road (N to S)	107	114	-7	-6%	0.65	\checkmark	\checkmark
TC-6.10 A141/B1101 Wimblington Road (E to S)	6	0	6	100%	3.46	\checkmark	\checkmark
TC-16.2 A141/B1093 Doddington Road (N to W)	46	69	-23	-51%	3.06	\checkmark	\checkmark
TC-16.3 A141/B1093 Doddington Road (S to W)	78	73	5	6%	0.57	√	√
TC-16.5 A141/B1093 Doddington Road (W to N)	48	20	28	58%	4.77	√	\checkmark
TC-16.6 A141/B1093 Doddington Road (W to S)	24	24	0	1%	0.04	√	\checkmark
Screenline Total	845	823	22	3%	0.76	\checkmark	~

Validation Count Results

Table A.6 – PM Peak Validation Count Results

Description	Observed Flow	Modelled Flow	Diff	% Diff	GEH	DMRB Flow	DMRB GEH
E-1.1 Wisbech Road (EB)	461	513	-52	-11%	2.36	\checkmark	\checkmark
E-1.2 Wisbech Road (WB)	510	586	-76	-15%	3.26	\checkmark	\checkmark
E-5.1 Upwell Road (WB)	121	138	-18	-15%	1.54	\checkmark	\checkmark
E-5.2 Upwell Road (EB)	102	124	-22	-22%	2.09	\checkmark	\checkmark
E-7.1 Knights End Road (EB)	128	38	90	70%	9.83	\checkmark	×
E-7.2 Knights End Road (WB)	47	7	40	85%	7.74	\checkmark	×
E-8.1 Burrowmoor Road (EB)	145	133	12	8%	1.03	\checkmark	\checkmark
E-8.2 Burrowmoor Road (WB)	65	46	19	29%	2.53	\checkmark	\checkmark

E-9.1 Gaul Road (EB)	153	172	-20	-13%	1.53	\checkmark	\checkmark
E-9.2 Gaul Road (WB)	54	63	-9	-16%	1.13	\checkmark	\checkmark
E-10.1 A141 March Bypass (SB)	813	907	-94	-12%	3.21	\checkmark	~
E-10.2 A141 March Bypass (NB)	750	803	-53	-7%	1.90	\checkmark	\checkmark
E-11.1 Town Bridge (SB)	687	722	-35	-5%	1.32	\checkmark	\checkmark
E-11.2 Town Bridge (NB)	690	755	-66	-10%	2.44	\checkmark	\checkmark
R-1.1 B1101 Elm Road (NB)	215	198	17	8%	1.20	\checkmark	\checkmark
R-1.2 B1101 Elm Road (SB)	301	303	-2	-1%	0.09	\checkmark	\checkmark
R-2.1 B1099 Upwell Road (WB)	126	138	-12	-10%	1.09	\checkmark	\checkmark
R-2.2 B1099 Upwell Road (EB)	126	124	2	2%	0.20	\checkmark	\checkmark
R-3.1 B1101 Wimblington Road (NB)	381	443	-62	-16%	3.06	\checkmark	\checkmark
R-3.2 B1101 Wimblington Road (SB)	588	530	58	10%	2.45	\checkmark	\checkmark
R-5.1 A141 Wisbech Road (NB)	829	901	-72	-9%	2.45	\checkmark	\checkmark
R-5.2 A141 Wisbech Road (SB)	817	755	62	8%	2.20	\checkmark	\checkmark
TC-8.1 A141/Knights End Road (S to W)	8	5	3	31%	0.97	\checkmark	\checkmark
TC-8.2 A141/Knights End Road (S to N)	770	781	-11	-1%	0.40	\checkmark	\checkmark
TC-8.3 A141/Knights End Road (S to E)	6	0	6	100%	3.46	\checkmark	\checkmark
TC-8.4 A141/Knights End Road (W to N)	36	0	36	100%	8.49	\checkmark	×
TC-8.5 A141/Knights End Road (W to E)	19	2	17	90%	5.22	\checkmark	×
TC-8.6 A141/Knights End Road (W to S)	11	1	10	87%	3.85	\checkmark	\checkmark

TC-8.7 A141/Knights End Road (N to E)	84	36	48	57%	6.16	\checkmark	×
TC-8.8 A141/Knights End Road (N to S)	642	665	-23	-4%	0.92	\checkmark	\checkmark
TC-8.9 A141/Knights End Road (N to W)	42	0	42	100%	9.20	\checkmark	×
TC-8.10 A141/Knights End Road (E to S)	9	0	9	100%	4.24	\checkmark	\checkmark
TC-8.11 A141/Knights End Road (E to W)	5	7	-2	-37%	0.76	\checkmark	\checkmark
TC-8.12 A141/Knights End Road (E to N)	35	0	35	100%	8.37	\checkmark	×
TC-13.1 B1101 High Street/Burrowmoor Road (N to S)	323	314	9	3%	0.50	\checkmark	\checkmark
TC-13.2 B1101 High Street/Burrowmoor Road (N to SW & NW)	170	157	13	8%	1.05	~	\checkmark
TC-13.3 B1101 High Street/Burrowmoor Road (S to SW & NW)	76	86	-10	-13%	1.10	\checkmark	\checkmark
TC-13.4 B1101 High Street/Burrowmoor Road (S to N)	439	429	9	2%	0.45	\checkmark	\checkmark
TC-13.9 B1101 High Street/Burrowmoor Road (SW & NW to N)	204	142	62	31%	4.74	\checkmark	\checkmark
TC-13.10 B1101 High Street/Burrowmoor Road (SW & NW to S)	135	187	-52	-38%	4.06	~	\checkmark
TC-21.1 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (E to S)	396	435	-39	-10%	1.91	~	\checkmark
TC-21.2 B1101 Broad St/B1099 Dartford Rd/B1101 Station Rd (E to W)	74	68	6	8%	0.71	\checkmark	\checkmark

TC-21.3 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (E to N)	4	0	4	100%	2.83	\checkmark	\checkmark
TC-21.4 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to W)	369	337	32	9%	1.69	\checkmark	\checkmark
TC-21.5 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to N)	26	0	26	100%	7.14	\checkmark	×
TC-21.6 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (S to E)	313	325	-12	-4%	0.69	\checkmark	\checkmark
TC-21.7 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (W to N)	4	0	4	100%	2.83	√	\checkmark
TC-21.8 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (W to E)	91	58	33	36%	3.77	\checkmark	\checkmark
TC-21.9 B1101 Broad Street/B1099 Dartford Road/B1101 Station Road (W to S)	319	270	49	15%	2.86	√	\checkmark
TC-23.1 B1099 Upwell road/Elwyn Road (N to E)	91	114	-22	-25%	2.22	\checkmark	\checkmark
TC-23.2 B1099 Upwell road/Elwyn Road (N to W)	40	87	-47	-119%	5.93	\checkmark	×
TC-23.3 B1099 Upwell road/Elwyn Road (E to W)	123	94	29	24%	2.78	\checkmark	~
TC-23.4 B1099 Upwell road/Elwyn Road (E to N)	54	69	-15	-28%	1.92	\checkmark	~
TC-23.5 B1099 Upwell road/Elwyn Road (W to N)	76	96	-21	-28%	2.26	\checkmark	~

TC-23.6 B1099 Upwell road/Elwyn Road (W to E)	114	105	9	8%	0.82	\checkmark	~
TC-24.1 Hundreds Road/Norwood Road (N to E)	103	67	36	35%	3.94	\checkmark	\checkmark
TC-24.2 Hundreds Road/Norwood Road (N to S)	167	120	47	28%	3.93	\checkmark	~
TC-24.3 Hundreds Road/Norwood Road (E to S)	76	92	-16	-21%	1.78	\checkmark	\checkmark
TC-24.4 Hundreds Road/Norwood Road (E to N)	47	30	17	35%	2.65	\checkmark	\checkmark
TC-24.5 Hundreds Road/Norwood Road (S to N)	70	34	36	51%	4.94	\checkmark	~
TC-24.6 Hundreds Road/Norwood Road (S to E)	84	74	10	12%	1.15	\checkmark	\checkmark
TC-26.1 Estover Road/Creek Road (E to S)	11	10	1	8%	0.28	\checkmark	\checkmark
TC-26.2 Estover Road/Creek Road (E to W)	11	20	-9	-81%	2.28	\checkmark	\checkmark
TC-26.3 Estover Road/Creek Road (S to W)	26	9	17	64%	3.97	\checkmark	\checkmark
TC-26.4 Estover Road/Creek Road (S to E)	4	11	-7	-183%	2.65	\checkmark	\checkmark
TC-26.5 Estover Road/Creek Road (W to E)	13	25	-11	-84%	2.58	\checkmark	\checkmark
TC-26.6 Estover Road/Creek Road (W to S)	38	35	4	9%	0.60	\checkmark	\checkmark
LC-1.1 B1101 Station Road Level Crossing (NB)	264	255	10	4%	0.59	\checkmark	\checkmark
LC-1.2 B1101 Station Road Level Crossing (SB)	276	286	-10	-4%	0.61	\checkmark	\checkmark

139

MATS: Comparison of Modelled and Observed Journey Times - PM -Pink Route NB

Figure A.21 – Pink Route NB – PM Peak

MATS: Comparison of Modelled and Observed Journey Times - PM -Pink Route SB

Figure A.22 – Pink Route SB – PM Peak

MATS: Comparison of Modelled and Observed Journey Times - PM -Blue Route EB

Figure A.23 – Blue Route EB – PM Peak

MATS: Comparison of Modelled and Observed Journey Times - PM -Blue Route WB

Figure A.24 – Blue Route WB – PM Peak

Figure A.25 – Green Route NB – PM Peak

MATS: Comparison of Modelled and Observed Journey Times - PM -Green Boute SB

Figure A.26 – Green Route SB – PM Peak

MATS: Comparison of Modelled and Observed Journey Times - PM -Red Route NB

Figure A.27 – Red Route NB – PM Peak

MATS: Comparison of Modelled and Observed Journey Times - PM -Red Route SB

Figure A.28 – Red Route SB – PM Peak

MATS: Comparison of Modelled and Observed Journey Times - PM -

Figure A.29 – Black Route NB – PM Peak

Figure A.30 – Black Route SB – PM Peak

B. MATS Network and Sector System

MATS Network

B.1 Figure B.1 and Figure B.2 below shows the MATS SATURN model network.

Figure B.1 – MATS Network (Overview)

MATS Sector System

B.2 Figure B.3 and Figure B.4 below show the MATS 8 sector system.

Figure B.3 – MATS Sector System (Overview)

Paul Eagle 2 Wellbrook Court Girton Road Cambridge CB3 0NA Email: paul.eagle@atkinsglobal.com Telephone: +44 (0) 1223 814400 Direct telephone: +44 (0) 1223 814030 Fax: +44 (0) 1223 814520

© Atkins Ltd except where stated otherwise.

The Atkins logo, 'Carbon Critical Design' and the strapline 'Plan Design Enable' are trademarks of Atkins Ltd.